Unsupervised competition-based encoding
A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the fi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ben David, Daniel Resheff, Yehezkel Shraga Horesh, Yair |
description | A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11763180B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11763180B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11763180B23</originalsourceid><addsrcrecordid>eNrjZFAPzSsuLUgtKsssTk1RSM7PLUgtySzJzM_TTUoEiaTmJeenZOal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzM2NDCwMnI2Ni1AAA5tIoow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unsupervised competition-based encoding</title><source>esp@cenet</source><creator>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</creator><creatorcontrib>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</creatorcontrib><description>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230919&DB=EPODOC&CC=US&NR=11763180B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230919&DB=EPODOC&CC=US&NR=11763180B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ben David, Daniel</creatorcontrib><creatorcontrib>Resheff, Yehezkel Shraga</creatorcontrib><creatorcontrib>Horesh, Yair</creatorcontrib><title>Unsupervised competition-based encoding</title><description>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAPzSsuLUgtKsssTk1RSM7PLUgtySzJzM_TTUoEiaTmJeenZOal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzM2NDCwMnI2Ni1AAA5tIoow</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>Ben David, Daniel</creator><creator>Resheff, Yehezkel Shraga</creator><creator>Horesh, Yair</creator><scope>EVB</scope></search><sort><creationdate>20230919</creationdate><title>Unsupervised competition-based encoding</title><author>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11763180B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Ben David, Daniel</creatorcontrib><creatorcontrib>Resheff, Yehezkel Shraga</creatorcontrib><creatorcontrib>Horesh, Yair</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben David, Daniel</au><au>Resheff, Yehezkel Shraga</au><au>Horesh, Yair</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unsupervised competition-based encoding</title><date>2023-09-19</date><risdate>2023</risdate><abstract>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11763180B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Unsupervised competition-based encoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ben%20David,%20Daniel&rft.date=2023-09-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11763180B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |