Unsupervised competition-based encoding

A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ben David, Daniel, Resheff, Yehezkel Shraga, Horesh, Yair
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ben David, Daniel
Resheff, Yehezkel Shraga
Horesh, Yair
description A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11763180B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11763180B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11763180B23</originalsourceid><addsrcrecordid>eNrjZFAPzSsuLUgtKsssTk1RSM7PLUgtySzJzM_TTUoEiaTmJeenZOal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzM2NDCwMnI2Ni1AAA5tIoow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unsupervised competition-based encoding</title><source>esp@cenet</source><creator>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</creator><creatorcontrib>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</creatorcontrib><description>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230919&amp;DB=EPODOC&amp;CC=US&amp;NR=11763180B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230919&amp;DB=EPODOC&amp;CC=US&amp;NR=11763180B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ben David, Daniel</creatorcontrib><creatorcontrib>Resheff, Yehezkel Shraga</creatorcontrib><creatorcontrib>Horesh, Yair</creatorcontrib><title>Unsupervised competition-based encoding</title><description>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAPzSsuLUgtKsssTk1RSM7PLUgtySzJzM_TTUoEiaTmJeenZOal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzM2NDCwMnI2Ni1AAA5tIoow</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>Ben David, Daniel</creator><creator>Resheff, Yehezkel Shraga</creator><creator>Horesh, Yair</creator><scope>EVB</scope></search><sort><creationdate>20230919</creationdate><title>Unsupervised competition-based encoding</title><author>Ben David, Daniel ; Resheff, Yehezkel Shraga ; Horesh, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11763180B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Ben David, Daniel</creatorcontrib><creatorcontrib>Resheff, Yehezkel Shraga</creatorcontrib><creatorcontrib>Horesh, Yair</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben David, Daniel</au><au>Resheff, Yehezkel Shraga</au><au>Horesh, Yair</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unsupervised competition-based encoding</title><date>2023-09-19</date><risdate>2023</risdate><abstract>A method collects word-based data corresponding to a first identifier. A first phrase vector is generated for the first identifier by extracting frequency data from the word-based data. A similarity metric is generated corresponding to the first identifier and a second identifier by comparing the first phrase vector of the first identifier to a second phrase vector of the second identifier. A tuple is generated that includes the first identifier and the second identifier using the similarity metric. A machine learning model is trained with the tuple to generate an embedded vector corresponding to the first identifier.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11763180B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Unsupervised competition-based encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ben%20David,%20Daniel&rft.date=2023-09-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11763180B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true