Automated generation of personalized content thumbnails
A system includes a computing platform including processing hardware and a memory storing software code, a trained machine learning (ML) model, and a content thumbnail generator. The processing hardware executes the software code to receive interaction data describing interactions by a user with con...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Farre Guiu, Miquel Angel Martin, Marc Junyent Niedt, Alexander Lucien, Mara Idai Logemann, Juli Alfaro Vendrell, Monica |
description | A system includes a computing platform including processing hardware and a memory storing software code, a trained machine learning (ML) model, and a content thumbnail generator. The processing hardware executes the software code to receive interaction data describing interactions by a user with content thumbnails, identify, using the interaction data, an affinity by the user for at least one content thumbnail feature, and determine, using the interaction data, a predetermined business rule, or both, content for promotion to the user. The software code further provides a prediction, using the trained ML model and based on the affinity by the user, of the desirability of each of multiple candidate thumbnails for the content to the user, generates, using the content thumbnail generator and based on the prediction, a thumbnail having features of one or more of the candidate thumbnails, and displays the thumbnail to promote the content to the user. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11758243B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11758243B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11758243B23</originalsourceid><addsrcrecordid>eNrjZDB3LC3Jz00sSU1RSE_NSy1KLMnMz1PIT1MoSC0qzs9LzMmsAkol5-eVpOaVKJRklOYm5SVm5hTzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLEZKBpJfGhwYaG5qYWRibGTkbGxKgBACnmLtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated generation of personalized content thumbnails</title><source>esp@cenet</source><creator>Farre Guiu, Miquel Angel ; Martin, Marc Junyent ; Niedt, Alexander ; Lucien, Mara Idai ; Logemann, Juli ; Alfaro Vendrell, Monica</creator><creatorcontrib>Farre Guiu, Miquel Angel ; Martin, Marc Junyent ; Niedt, Alexander ; Lucien, Mara Idai ; Logemann, Juli ; Alfaro Vendrell, Monica</creatorcontrib><description>A system includes a computing platform including processing hardware and a memory storing software code, a trained machine learning (ML) model, and a content thumbnail generator. The processing hardware executes the software code to receive interaction data describing interactions by a user with content thumbnails, identify, using the interaction data, an affinity by the user for at least one content thumbnail feature, and determine, using the interaction data, a predetermined business rule, or both, content for promotion to the user. The software code further provides a prediction, using the trained ML model and based on the affinity by the user, of the desirability of each of multiple candidate thumbnails for the content to the user, generates, using the content thumbnail generator and based on the prediction, a thumbnail having features of one or more of the candidate thumbnails, and displays the thumbnail to promote the content to the user.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&CC=US&NR=11758243B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&CC=US&NR=11758243B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><creatorcontrib>Niedt, Alexander</creatorcontrib><creatorcontrib>Lucien, Mara Idai</creatorcontrib><creatorcontrib>Logemann, Juli</creatorcontrib><creatorcontrib>Alfaro Vendrell, Monica</creatorcontrib><title>Automated generation of personalized content thumbnails</title><description>A system includes a computing platform including processing hardware and a memory storing software code, a trained machine learning (ML) model, and a content thumbnail generator. The processing hardware executes the software code to receive interaction data describing interactions by a user with content thumbnails, identify, using the interaction data, an affinity by the user for at least one content thumbnail feature, and determine, using the interaction data, a predetermined business rule, or both, content for promotion to the user. The software code further provides a prediction, using the trained ML model and based on the affinity by the user, of the desirability of each of multiple candidate thumbnails for the content to the user, generates, using the content thumbnail generator and based on the prediction, a thumbnail having features of one or more of the candidate thumbnails, and displays the thumbnail to promote the content to the user.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3LC3Jz00sSU1RSE_NSy1KLMnMz1PIT1MoSC0qzs9LzMmsAkol5-eVpOaVKJRklOYm5SVm5hTzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLEZKBpJfGhwYaG5qYWRibGTkbGxKgBACnmLtc</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Farre Guiu, Miquel Angel</creator><creator>Martin, Marc Junyent</creator><creator>Niedt, Alexander</creator><creator>Lucien, Mara Idai</creator><creator>Logemann, Juli</creator><creator>Alfaro Vendrell, Monica</creator><scope>EVB</scope></search><sort><creationdate>20230912</creationdate><title>Automated generation of personalized content thumbnails</title><author>Farre Guiu, Miquel Angel ; Martin, Marc Junyent ; Niedt, Alexander ; Lucien, Mara Idai ; Logemann, Juli ; Alfaro Vendrell, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11758243B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><creatorcontrib>Niedt, Alexander</creatorcontrib><creatorcontrib>Lucien, Mara Idai</creatorcontrib><creatorcontrib>Logemann, Juli</creatorcontrib><creatorcontrib>Alfaro Vendrell, Monica</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farre Guiu, Miquel Angel</au><au>Martin, Marc Junyent</au><au>Niedt, Alexander</au><au>Lucien, Mara Idai</au><au>Logemann, Juli</au><au>Alfaro Vendrell, Monica</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated generation of personalized content thumbnails</title><date>2023-09-12</date><risdate>2023</risdate><abstract>A system includes a computing platform including processing hardware and a memory storing software code, a trained machine learning (ML) model, and a content thumbnail generator. The processing hardware executes the software code to receive interaction data describing interactions by a user with content thumbnails, identify, using the interaction data, an affinity by the user for at least one content thumbnail feature, and determine, using the interaction data, a predetermined business rule, or both, content for promotion to the user. The software code further provides a prediction, using the trained ML model and based on the affinity by the user, of the desirability of each of multiple candidate thumbnails for the content to the user, generates, using the content thumbnail generator and based on the prediction, a thumbnail having features of one or more of the candidate thumbnails, and displays the thumbnail to promote the content to the user.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11758243B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION |
title | Automated generation of personalized content thumbnails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Farre%20Guiu,%20Miquel%20Angel&rft.date=2023-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11758243B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |