Protecting machine learning models from privacy attacks

This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharma, Amit, Nori, Aditya Vithal, Tople, Shruti Shrikant
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that have a causal relationship with the outcome. The machine learning model may learn a function that predicts an outcome based on the training data and the causal relationship data. A predefined privacy guarantee value may be received. An amount of noise may be added to the machine learning model to make a privacy guarantee value of the machine learning model equivalent to or stronger than the predefined privacy guarantee value. The amount of noise may be added at a parameter level of the machine learning model.