Hierarchical tournament-based machine learning predictions
Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinatio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kudva, Gautham K Vanga, Srinath goud Chatterjee, Koustuv |
description | Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinations may be selected using the machine learning selection model. Each evaluation component combination of the set of evaluation component combinations may include an algorithm, a hierarchical learning model corresponding to a level of a hierarchy, and a prediction model for the target prediction. The set of evaluation component combinations may be transmitted to a cluster of computing nodes. Output results may be received for the set of evaluation component combinations. The output results may be evaluated using the metric to determine a winning evaluation component combination. The winning evaluation component combination may be stored in storage for use in calculating future predictions for the target prediction. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11748640B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11748640B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11748640B23</originalsourceid><addsrcrecordid>eNrjZLDyyEwtSixKzshMTsxRKMkvLcpLzE3NK9FNSixOTVHITQTK5KUq5KQmFuVl5qUrFBSlpmQml2Tm5xXzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQ3MTCzMTAycjY2LUAADA1y_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hierarchical tournament-based machine learning predictions</title><source>esp@cenet</source><creator>Kudva, Gautham K ; Vanga, Srinath goud ; Chatterjee, Koustuv</creator><creatorcontrib>Kudva, Gautham K ; Vanga, Srinath goud ; Chatterjee, Koustuv</creatorcontrib><description>Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinations may be selected using the machine learning selection model. Each evaluation component combination of the set of evaluation component combinations may include an algorithm, a hierarchical learning model corresponding to a level of a hierarchy, and a prediction model for the target prediction. The set of evaluation component combinations may be transmitted to a cluster of computing nodes. Output results may be received for the set of evaluation component combinations. The output results may be evaluated using the metric to determine a winning evaluation component combination. The winning evaluation component combination may be stored in storage for use in calculating future predictions for the target prediction.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=US&NR=11748640B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=US&NR=11748640B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kudva, Gautham K</creatorcontrib><creatorcontrib>Vanga, Srinath goud</creatorcontrib><creatorcontrib>Chatterjee, Koustuv</creatorcontrib><title>Hierarchical tournament-based machine learning predictions</title><description>Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinations may be selected using the machine learning selection model. Each evaluation component combination of the set of evaluation component combinations may include an algorithm, a hierarchical learning model corresponding to a level of a hierarchy, and a prediction model for the target prediction. The set of evaluation component combinations may be transmitted to a cluster of computing nodes. Output results may be received for the set of evaluation component combinations. The output results may be evaluated using the metric to determine a winning evaluation component combination. The winning evaluation component combination may be stored in storage for use in calculating future predictions for the target prediction.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDyyEwtSixKzshMTsxRKMkvLcpLzE3NK9FNSixOTVHITQTK5KUq5KQmFuVl5qUrFBSlpmQml2Tm5xXzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQ3MTCzMTAycjY2LUAADA1y_U</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Kudva, Gautham K</creator><creator>Vanga, Srinath goud</creator><creator>Chatterjee, Koustuv</creator><scope>EVB</scope></search><sort><creationdate>20230905</creationdate><title>Hierarchical tournament-based machine learning predictions</title><author>Kudva, Gautham K ; Vanga, Srinath goud ; Chatterjee, Koustuv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11748640B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kudva, Gautham K</creatorcontrib><creatorcontrib>Vanga, Srinath goud</creatorcontrib><creatorcontrib>Chatterjee, Koustuv</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kudva, Gautham K</au><au>Vanga, Srinath goud</au><au>Chatterjee, Koustuv</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hierarchical tournament-based machine learning predictions</title><date>2023-09-05</date><risdate>2023</risdate><abstract>Systems and techniques for hierarchical tournament-based machine learning predictions are described herein. A machine learning selection model may be trained with training data. A configuration may be received that includes the metric and a target prediction. A set of evaluation component combinations may be selected using the machine learning selection model. Each evaluation component combination of the set of evaluation component combinations may include an algorithm, a hierarchical learning model corresponding to a level of a hierarchy, and a prediction model for the target prediction. The set of evaluation component combinations may be transmitted to a cluster of computing nodes. Output results may be received for the set of evaluation component combinations. The output results may be evaluated using the metric to determine a winning evaluation component combination. The winning evaluation component combination may be stored in storage for use in calculating future predictions for the target prediction.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11748640B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Hierarchical tournament-based machine learning predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kudva,%20Gautham%20K&rft.date=2023-09-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11748640B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |