Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values
A mechanism is described for facilitating fast data operations and for facilitating a finite state machine for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a proces...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Koker, Altug Jahagirdar, Sanjeev Sinha, Kamal Ray, Joydeep Ma, Liwei Satish, Nadathur Rajagopalan Ranganathan, Vasanth Vembu, Balaji Nurvitadhi, Eriko Bottleson, Jeremy Akhbari, Farshad Appu, Abhishek R |
description | A mechanism is described for facilitating fast data operations and for facilitating a finite state machine for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a processor including a graphics processor. The method may further include determining one or more frequently-used data values (FDVs) from the data, and pushing the one or more frequent data values to bypass the computational tasks. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11748106B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11748106B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11748106B23</originalsourceid><addsrcrecordid>eNqNjb0KwkAQhNNYiPoO6wMEjIpa-4e9Woc12dPDy96Z3Quk98E1ItY2M8PHMNNPnltUBB-oRrWeBZBLMJatEojiWyssbpYJjK9_2RHWbPkKjUW4tAFFwBsofBWifobQgaLcBS4oVIJnMDU9IrG6No0dKrvjBl0kGSY9g05o9PVBMt7vTptDSsHnJAELYtL8fMyy5XyVTRbr6eyfzgua1ksp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values</title><source>esp@cenet</source><creator>Koker, Altug ; Jahagirdar, Sanjeev ; Sinha, Kamal ; Ray, Joydeep ; Ma, Liwei ; Satish, Nadathur Rajagopalan ; Ranganathan, Vasanth ; Vembu, Balaji ; Nurvitadhi, Eriko ; Bottleson, Jeremy ; Akhbari, Farshad ; Appu, Abhishek R</creator><creatorcontrib>Koker, Altug ; Jahagirdar, Sanjeev ; Sinha, Kamal ; Ray, Joydeep ; Ma, Liwei ; Satish, Nadathur Rajagopalan ; Ranganathan, Vasanth ; Vembu, Balaji ; Nurvitadhi, Eriko ; Bottleson, Jeremy ; Akhbari, Farshad ; Appu, Abhishek R</creatorcontrib><description>A mechanism is described for facilitating fast data operations and for facilitating a finite state machine for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a processor including a graphics processor. The method may further include determining one or more frequently-used data values (FDVs) from the data, and pushing the one or more frequent data values to bypass the computational tasks.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=US&NR=11748106B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=US&NR=11748106B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Koker, Altug</creatorcontrib><creatorcontrib>Jahagirdar, Sanjeev</creatorcontrib><creatorcontrib>Sinha, Kamal</creatorcontrib><creatorcontrib>Ray, Joydeep</creatorcontrib><creatorcontrib>Ma, Liwei</creatorcontrib><creatorcontrib>Satish, Nadathur Rajagopalan</creatorcontrib><creatorcontrib>Ranganathan, Vasanth</creatorcontrib><creatorcontrib>Vembu, Balaji</creatorcontrib><creatorcontrib>Nurvitadhi, Eriko</creatorcontrib><creatorcontrib>Bottleson, Jeremy</creatorcontrib><creatorcontrib>Akhbari, Farshad</creatorcontrib><creatorcontrib>Appu, Abhishek R</creatorcontrib><title>Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values</title><description>A mechanism is described for facilitating fast data operations and for facilitating a finite state machine for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a processor including a graphics processor. The method may further include determining one or more frequently-used data values (FDVs) from the data, and pushing the one or more frequent data values to bypass the computational tasks.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjb0KwkAQhNNYiPoO6wMEjIpa-4e9Woc12dPDy96Z3Quk98E1ItY2M8PHMNNPnltUBB-oRrWeBZBLMJatEojiWyssbpYJjK9_2RHWbPkKjUW4tAFFwBsofBWifobQgaLcBS4oVIJnMDU9IrG6No0dKrvjBl0kGSY9g05o9PVBMt7vTptDSsHnJAELYtL8fMyy5XyVTRbr6eyfzgua1ksp</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Koker, Altug</creator><creator>Jahagirdar, Sanjeev</creator><creator>Sinha, Kamal</creator><creator>Ray, Joydeep</creator><creator>Ma, Liwei</creator><creator>Satish, Nadathur Rajagopalan</creator><creator>Ranganathan, Vasanth</creator><creator>Vembu, Balaji</creator><creator>Nurvitadhi, Eriko</creator><creator>Bottleson, Jeremy</creator><creator>Akhbari, Farshad</creator><creator>Appu, Abhishek R</creator><scope>EVB</scope></search><sort><creationdate>20230905</creationdate><title>Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values</title><author>Koker, Altug ; Jahagirdar, Sanjeev ; Sinha, Kamal ; Ray, Joydeep ; Ma, Liwei ; Satish, Nadathur Rajagopalan ; Ranganathan, Vasanth ; Vembu, Balaji ; Nurvitadhi, Eriko ; Bottleson, Jeremy ; Akhbari, Farshad ; Appu, Abhishek R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11748106B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Koker, Altug</creatorcontrib><creatorcontrib>Jahagirdar, Sanjeev</creatorcontrib><creatorcontrib>Sinha, Kamal</creatorcontrib><creatorcontrib>Ray, Joydeep</creatorcontrib><creatorcontrib>Ma, Liwei</creatorcontrib><creatorcontrib>Satish, Nadathur Rajagopalan</creatorcontrib><creatorcontrib>Ranganathan, Vasanth</creatorcontrib><creatorcontrib>Vembu, Balaji</creatorcontrib><creatorcontrib>Nurvitadhi, Eriko</creatorcontrib><creatorcontrib>Bottleson, Jeremy</creatorcontrib><creatorcontrib>Akhbari, Farshad</creatorcontrib><creatorcontrib>Appu, Abhishek R</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koker, Altug</au><au>Jahagirdar, Sanjeev</au><au>Sinha, Kamal</au><au>Ray, Joydeep</au><au>Ma, Liwei</au><au>Satish, Nadathur Rajagopalan</au><au>Ranganathan, Vasanth</au><au>Vembu, Balaji</au><au>Nurvitadhi, Eriko</au><au>Bottleson, Jeremy</au><au>Akhbari, Farshad</au><au>Appu, Abhishek R</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values</title><date>2023-09-05</date><risdate>2023</risdate><abstract>A mechanism is described for facilitating fast data operations and for facilitating a finite state machine for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting input data to be used in computational tasks by a computation component of a processor including a graphics processor. The method may further include determining one or more frequently-used data values (FDVs) from the data, and pushing the one or more frequent data values to bypass the computational tasks.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11748106B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Data operations and finite state machine for machine learning via bypass of computational tasks based on frequently-used data values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Koker,%20Altug&rft.date=2023-09-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11748106B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |