Hardware, firmware, and software anomaly handling based on machine learning

Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anoma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McCain, Edward C, Bhattacharya, Barin, Nettey, Jeffrey, Willoughby, Jeffrey
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator McCain, Edward C
Bhattacharya, Barin
Nettey, Jeffrey
Willoughby, Jeffrey
description Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11741065B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11741065B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11741065B23</originalsourceid><addsrcrecordid>eNrjZPD2SCxKKU8sStVRSMssyoWwEvNSFIrz00pAPCAnPzcxp1IhAyiak5mXrpCUWJyaopCfp5CbmJyRmZeqkJOaWJQHlOFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5iaGBmamTkbGxKgBACv1NTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hardware, firmware, and software anomaly handling based on machine learning</title><source>esp@cenet</source><creator>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</creator><creatorcontrib>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</creatorcontrib><description>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=US&amp;NR=11741065B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=US&amp;NR=11741065B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McCain, Edward C</creatorcontrib><creatorcontrib>Bhattacharya, Barin</creatorcontrib><creatorcontrib>Nettey, Jeffrey</creatorcontrib><creatorcontrib>Willoughby, Jeffrey</creatorcontrib><title>Hardware, firmware, and software anomaly handling based on machine learning</title><description>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2SCxKKU8sStVRSMssyoWwEvNSFIrz00pAPCAnPzcxp1IhAyiak5mXrpCUWJyaopCfp5CbmJyRmZeqkJOaWJQHlOFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5iaGBmamTkbGxKgBACv1NTA</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>McCain, Edward C</creator><creator>Bhattacharya, Barin</creator><creator>Nettey, Jeffrey</creator><creator>Willoughby, Jeffrey</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Hardware, firmware, and software anomaly handling based on machine learning</title><author>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11741065B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>McCain, Edward C</creatorcontrib><creatorcontrib>Bhattacharya, Barin</creatorcontrib><creatorcontrib>Nettey, Jeffrey</creatorcontrib><creatorcontrib>Willoughby, Jeffrey</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McCain, Edward C</au><au>Bhattacharya, Barin</au><au>Nettey, Jeffrey</au><au>Willoughby, Jeffrey</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hardware, firmware, and software anomaly handling based on machine learning</title><date>2023-08-29</date><risdate>2023</risdate><abstract>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11741065B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Hardware, firmware, and software anomaly handling based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=McCain,%20Edward%20C&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11741065B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true