Hardware, firmware, and software anomaly handling based on machine learning
Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anoma...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | McCain, Edward C Bhattacharya, Barin Nettey, Jeffrey Willoughby, Jeffrey |
description | Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11741065B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11741065B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11741065B23</originalsourceid><addsrcrecordid>eNrjZPD2SCxKKU8sStVRSMssyoWwEvNSFIrz00pAPCAnPzcxp1IhAyiak5mXrpCUWJyaopCfp5CbmJyRmZeqkJOaWJQHlOFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5iaGBmamTkbGxKgBACv1NTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hardware, firmware, and software anomaly handling based on machine learning</title><source>esp@cenet</source><creator>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</creator><creatorcontrib>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</creatorcontrib><description>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=US&NR=11741065B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=US&NR=11741065B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McCain, Edward C</creatorcontrib><creatorcontrib>Bhattacharya, Barin</creatorcontrib><creatorcontrib>Nettey, Jeffrey</creatorcontrib><creatorcontrib>Willoughby, Jeffrey</creatorcontrib><title>Hardware, firmware, and software anomaly handling based on machine learning</title><description>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2SCxKKU8sStVRSMssyoWwEvNSFIrz00pAPCAnPzcxp1IhAyiak5mXrpCUWJyaopCfp5CbmJyRmZeqkJOaWJQHlOFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5iaGBmamTkbGxKgBACv1NTA</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>McCain, Edward C</creator><creator>Bhattacharya, Barin</creator><creator>Nettey, Jeffrey</creator><creator>Willoughby, Jeffrey</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Hardware, firmware, and software anomaly handling based on machine learning</title><author>McCain, Edward C ; Bhattacharya, Barin ; Nettey, Jeffrey ; Willoughby, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11741065B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>McCain, Edward C</creatorcontrib><creatorcontrib>Bhattacharya, Barin</creatorcontrib><creatorcontrib>Nettey, Jeffrey</creatorcontrib><creatorcontrib>Willoughby, Jeffrey</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McCain, Edward C</au><au>Bhattacharya, Barin</au><au>Nettey, Jeffrey</au><au>Willoughby, Jeffrey</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hardware, firmware, and software anomaly handling based on machine learning</title><date>2023-08-29</date><risdate>2023</risdate><abstract>Aspects of the invention include detecting an anomaly in a database of hardware, firmware, and software events. An exemplary method includes determining whether a previously addressed anomaly is a duplicate of the anomaly, addressing the anomaly according to a state of the previously addressed anomaly based on the previously addressed anomaly being a duplicate of the anomaly, and addressing the anomaly according to machine learning based on the previously addressed anomaly not being the duplicate of the anomaly.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11741065B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Hardware, firmware, and software anomaly handling based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=McCain,%20Edward%20C&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11741065B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |