Neural network model trained using generated synthetic images
Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is use...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Brophy, Mark A Jampani, Varun Birchfield, Stanley Thomas To, Thang Hong Acuna Marrero, David Jesus Anil, Cem Prakash, Aayush Tremblay, Jonathan |
description | Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11715251B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11715251B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11715251B23</originalsourceid><addsrcrecordid>eNrjZLD1Sy0tSsxRyEstKc8vylbIzU9JzVEoKUrMzEtNUSgtzsxLV0hPzUstSiwB8osr80oyUksykxUycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlBrSXxosKGhuaGpkamhk5ExMWoAUzQwtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network model trained using generated synthetic images</title><source>esp@cenet</source><creator>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</creator><creatorcontrib>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</creatorcontrib><description>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=US&NR=11715251B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=US&NR=11715251B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Brophy, Mark A</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Anil, Cem</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><title>Neural network model trained using generated synthetic images</title><description>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1Sy0tSsxRyEstKc8vylbIzU9JzVEoKUrMzEtNUSgtzsxLV0hPzUstSiwB8osr80oyUksykxUycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlBrSXxosKGhuaGpkamhk5ExMWoAUzQwtQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Brophy, Mark A</creator><creator>Jampani, Varun</creator><creator>Birchfield, Stanley Thomas</creator><creator>To, Thang Hong</creator><creator>Acuna Marrero, David Jesus</creator><creator>Anil, Cem</creator><creator>Prakash, Aayush</creator><creator>Tremblay, Jonathan</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Neural network model trained using generated synthetic images</title><author>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11715251B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brophy, Mark A</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Anil, Cem</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brophy, Mark A</au><au>Jampani, Varun</au><au>Birchfield, Stanley Thomas</au><au>To, Thang Hong</au><au>Acuna Marrero, David Jesus</au><au>Anil, Cem</au><au>Prakash, Aayush</au><au>Tremblay, Jonathan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network model trained using generated synthetic images</title><date>2023-08-01</date><risdate>2023</risdate><abstract>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11715251B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Neural network model trained using generated synthetic images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Brophy,%20Mark%20A&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11715251B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |