Neural network model trained using generated synthetic images

Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brophy, Mark A, Jampani, Varun, Birchfield, Stanley Thomas, To, Thang Hong, Acuna Marrero, David Jesus, Anil, Cem, Prakash, Aayush, Tremblay, Jonathan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Brophy, Mark A
Jampani, Varun
Birchfield, Stanley Thomas
To, Thang Hong
Acuna Marrero, David Jesus
Anil, Cem
Prakash, Aayush
Tremblay, Jonathan
description Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11715251B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11715251B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11715251B23</originalsourceid><addsrcrecordid>eNrjZLD1Sy0tSsxRyEstKc8vylbIzU9JzVEoKUrMzEtNUSgtzsxLV0hPzUstSiwB8osr80oyUksykxUycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlBrSXxosKGhuaGpkamhk5ExMWoAUzQwtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network model trained using generated synthetic images</title><source>esp@cenet</source><creator>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</creator><creatorcontrib>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</creatorcontrib><description>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=US&amp;NR=11715251B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=US&amp;NR=11715251B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Brophy, Mark A</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Anil, Cem</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><title>Neural network model trained using generated synthetic images</title><description>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1Sy0tSsxRyEstKc8vylbIzU9JzVEoKUrMzEtNUSgtzsxLV0hPzUstSiwB8osr80oyUksykxUycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlBrSXxosKGhuaGpkamhk5ExMWoAUzQwtQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Brophy, Mark A</creator><creator>Jampani, Varun</creator><creator>Birchfield, Stanley Thomas</creator><creator>To, Thang Hong</creator><creator>Acuna Marrero, David Jesus</creator><creator>Anil, Cem</creator><creator>Prakash, Aayush</creator><creator>Tremblay, Jonathan</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Neural network model trained using generated synthetic images</title><author>Brophy, Mark A ; Jampani, Varun ; Birchfield, Stanley Thomas ; To, Thang Hong ; Acuna Marrero, David Jesus ; Anil, Cem ; Prakash, Aayush ; Tremblay, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11715251B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brophy, Mark A</creatorcontrib><creatorcontrib>Jampani, Varun</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Anil, Cem</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brophy, Mark A</au><au>Jampani, Varun</au><au>Birchfield, Stanley Thomas</au><au>To, Thang Hong</au><au>Acuna Marrero, David Jesus</au><au>Anil, Cem</au><au>Prakash, Aayush</au><au>Tremblay, Jonathan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network model trained using generated synthetic images</title><date>2023-08-01</date><risdate>2023</risdate><abstract>Training deep neural networks requires a large amount of labeled training data. Conventionally, labeled training data is generated by gathering real images that are manually labelled which is very time-consuming. Instead of manually labelling a training dataset, domain randomization technique is used generate training data that is automatically labeled. The generated training data may be used to train neural networks for object detection and segmentation (labelling) tasks. In an embodiment, the generated training data includes synthetic input images generated by rendering three-dimensional (3D) objects of interest in a 3D scene. In an embodiment, the generated training data includes synthetic input images generated by rendering 3D objects of interest on a 2D background image. The 3D objects of interest are objects that a neural network is trained to detect and/or label.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11715251B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Neural network model trained using generated synthetic images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Brophy,%20Mark%20A&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11715251B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true