Active image depth prediction
An active depth detection system can generate a depth map from an image and user interaction data, such as a pair of clicks. The active depth detection system can be implemented as a recurrent neural network that can receive the user interaction data as runtime inputs after training. The active dept...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Wang, Shenlong Duan, Kun Sagar, Dhritiman Hanumante, Sumant Milind Xu, Ning Ma, Chongyang Ron, Daniel |
description | An active depth detection system can generate a depth map from an image and user interaction data, such as a pair of clicks. The active depth detection system can be implemented as a recurrent neural network that can receive the user interaction data as runtime inputs after training. The active depth detection system can store the generated depth map for further processing, such as image manipulation or real-world object detection. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11715223B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11715223B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11715223B23</originalsourceid><addsrcrecordid>eNrjZJB1TC7JLEtVyMxNTE9VSEktKMlQKChKTckECufn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzQ1MjI2MnI2Ni1AAAxEIkKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Active image depth prediction</title><source>esp@cenet</source><creator>Wang, Shenlong ; Duan, Kun ; Sagar, Dhritiman ; Hanumante, Sumant Milind ; Xu, Ning ; Ma, Chongyang ; Ron, Daniel</creator><creatorcontrib>Wang, Shenlong ; Duan, Kun ; Sagar, Dhritiman ; Hanumante, Sumant Milind ; Xu, Ning ; Ma, Chongyang ; Ron, Daniel</creatorcontrib><description>An active depth detection system can generate a depth map from an image and user interaction data, such as a pair of clicks. The active depth detection system can be implemented as a recurrent neural network that can receive the user interaction data as runtime inputs after training. The active depth detection system can store the generated depth map for further processing, such as image manipulation or real-world object detection.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=US&NR=11715223B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=US&NR=11715223B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Duan, Kun</creatorcontrib><creatorcontrib>Sagar, Dhritiman</creatorcontrib><creatorcontrib>Hanumante, Sumant Milind</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Ma, Chongyang</creatorcontrib><creatorcontrib>Ron, Daniel</creatorcontrib><title>Active image depth prediction</title><description>An active depth detection system can generate a depth map from an image and user interaction data, such as a pair of clicks. The active depth detection system can be implemented as a recurrent neural network that can receive the user interaction data as runtime inputs after training. The active depth detection system can store the generated depth map for further processing, such as image manipulation or real-world object detection.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB1TC7JLEtVyMxNTE9VSEktKMlQKChKTckECufn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NzQ1MjI2MnI2Ni1AAAxEIkKQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wang, Shenlong</creator><creator>Duan, Kun</creator><creator>Sagar, Dhritiman</creator><creator>Hanumante, Sumant Milind</creator><creator>Xu, Ning</creator><creator>Ma, Chongyang</creator><creator>Ron, Daniel</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Active image depth prediction</title><author>Wang, Shenlong ; Duan, Kun ; Sagar, Dhritiman ; Hanumante, Sumant Milind ; Xu, Ning ; Ma, Chongyang ; Ron, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11715223B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Duan, Kun</creatorcontrib><creatorcontrib>Sagar, Dhritiman</creatorcontrib><creatorcontrib>Hanumante, Sumant Milind</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Ma, Chongyang</creatorcontrib><creatorcontrib>Ron, Daniel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shenlong</au><au>Duan, Kun</au><au>Sagar, Dhritiman</au><au>Hanumante, Sumant Milind</au><au>Xu, Ning</au><au>Ma, Chongyang</au><au>Ron, Daniel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Active image depth prediction</title><date>2023-08-01</date><risdate>2023</risdate><abstract>An active depth detection system can generate a depth map from an image and user interaction data, such as a pair of clicks. The active depth detection system can be implemented as a recurrent neural network that can receive the user interaction data as runtime inputs after training. The active depth detection system can store the generated depth map for further processing, such as image manipulation or real-world object detection.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11715223B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Active image depth prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wang,%20Shenlong&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11715223B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |