Transition regularized matrix factorization for sequential recommendation

Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, Hao, Samadi, Shamim, Das, Mahashweta
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yang, Hao
Samadi, Shamim
Das, Mahashweta
description Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11704324B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11704324B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11704324B23</originalsourceid><addsrcrecordid>eNrjZPAMKUrMK84syczPUyhKTS_NSSzKrEpNUchNLCnKrFBIS0wuyQeKJIIVpOUXKRSnFpam5pVkJuYA1Sfn5-am5qWAZXkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhuYGJsZGJk5ExMWoAnE82Qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transition regularized matrix factorization for sequential recommendation</title><source>esp@cenet</source><creator>Yang, Hao ; Samadi, Shamim ; Das, Mahashweta</creator><creatorcontrib>Yang, Hao ; Samadi, Shamim ; Das, Mahashweta</creatorcontrib><description>Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230718&amp;DB=EPODOC&amp;CC=US&amp;NR=11704324B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230718&amp;DB=EPODOC&amp;CC=US&amp;NR=11704324B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Samadi, Shamim</creatorcontrib><creatorcontrib>Das, Mahashweta</creatorcontrib><title>Transition regularized matrix factorization for sequential recommendation</title><description>Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAMKUrMK84syczPUyhKTS_NSSzKrEpNUchNLCnKrFBIS0wuyQeKJIIVpOUXKRSnFpam5pVkJuYA1Sfn5-am5qWAZXkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhuYGJsZGJk5ExMWoAnE82Qg</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Yang, Hao</creator><creator>Samadi, Shamim</creator><creator>Das, Mahashweta</creator><scope>EVB</scope></search><sort><creationdate>20230718</creationdate><title>Transition regularized matrix factorization for sequential recommendation</title><author>Yang, Hao ; Samadi, Shamim ; Das, Mahashweta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11704324B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Samadi, Shamim</creatorcontrib><creatorcontrib>Das, Mahashweta</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Hao</au><au>Samadi, Shamim</au><au>Das, Mahashweta</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transition regularized matrix factorization for sequential recommendation</title><date>2023-07-18</date><risdate>2023</risdate><abstract>Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11704324B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Transition regularized matrix factorization for sequential recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yang,%20Hao&rft.date=2023-07-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11704324B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true