Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems

The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems ("MLUI") transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neto, Manuel De Araujo Pedreira, Snyder, Jason Alan, Gorman, Stephen Michael, Klau Silverman, Elena, Clark, Michael
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Neto, Manuel De Araujo Pedreira
Snyder, Jason Alan
Gorman, Stephen Michael
Klau Silverman, Elena
Clark, Michael
description The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems ("MLUI") transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections, campaigns, user interface visualizations, cognitive intelligence question output outputs. A category identifier selection is obtained via a category selection interaction interface mechanism. Entity segment identifier selections are obtained via entity segment selection interaction interface mechanisms. A set of visualization cognitive intelligence (CI) datapoint identifiers is determined as CI datapoint identifiers associated with each combination of a selected entity segment identifier and the selected category identifier. CI datapoint values corresponding to the set of visualization CI datapoint identifiers are retrieved from a NoSQL database configured to act as cache for generating visualizations based on metrics calculated using survey data. A visualization is generated using the retrieved CI datapoint values.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11694119B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11694119B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11694119B13</originalsourceid><addsrcrecordid>eNqNzDEOwjAMheEuDAi4g9lhiEBIXUEgFiZgrqzGTSMlTojdgdvTIg7A9Jbvf_PqdRuCeusjsfjEGCBi23smCISFPTuwqAjIFgahAp6VSoctgZAbKwVF5yZH7KYOc8aCOmLZQCTtk5VvLm9RirKsZh0GodVvF9X6cn6crlvKqSHJ4zWTNs-7MYd6b0x9NLt_zAcKIESI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems</title><source>esp@cenet</source><creator>Neto, Manuel De Araujo Pedreira ; Snyder, Jason Alan ; Gorman, Stephen Michael ; Klau Silverman, Elena ; Clark, Michael</creator><creatorcontrib>Neto, Manuel De Araujo Pedreira ; Snyder, Jason Alan ; Gorman, Stephen Michael ; Klau Silverman, Elena ; Clark, Michael</creatorcontrib><description>The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems ("MLUI") transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections, campaigns, user interface visualizations, cognitive intelligence question output outputs. A category identifier selection is obtained via a category selection interaction interface mechanism. Entity segment identifier selections are obtained via entity segment selection interaction interface mechanisms. A set of visualization cognitive intelligence (CI) datapoint identifiers is determined as CI datapoint identifiers associated with each combination of a selected entity segment identifier and the selected category identifier. CI datapoint values corresponding to the set of visualization CI datapoint identifiers are retrieved from a NoSQL database configured to act as cache for generating visualizations based on metrics calculated using survey data. A visualization is generated using the retrieved CI datapoint values.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=US&amp;NR=11694119B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=US&amp;NR=11694119B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Neto, Manuel De Araujo Pedreira</creatorcontrib><creatorcontrib>Snyder, Jason Alan</creatorcontrib><creatorcontrib>Gorman, Stephen Michael</creatorcontrib><creatorcontrib>Klau Silverman, Elena</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><title>Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems</title><description>The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems ("MLUI") transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections, campaigns, user interface visualizations, cognitive intelligence question output outputs. A category identifier selection is obtained via a category selection interaction interface mechanism. Entity segment identifier selections are obtained via entity segment selection interaction interface mechanisms. A set of visualization cognitive intelligence (CI) datapoint identifiers is determined as CI datapoint identifiers associated with each combination of a selected entity segment identifier and the selected category identifier. CI datapoint values corresponding to the set of visualization CI datapoint identifiers are retrieved from a NoSQL database configured to act as cache for generating visualizations based on metrics calculated using survey data. A visualization is generated using the retrieved CI datapoint values.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEOwjAMheEuDAi4g9lhiEBIXUEgFiZgrqzGTSMlTojdgdvTIg7A9Jbvf_PqdRuCeusjsfjEGCBi23smCISFPTuwqAjIFgahAp6VSoctgZAbKwVF5yZH7KYOc8aCOmLZQCTtk5VvLm9RirKsZh0GodVvF9X6cn6crlvKqSHJ4zWTNs-7MYd6b0x9NLt_zAcKIESI</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Neto, Manuel De Araujo Pedreira</creator><creator>Snyder, Jason Alan</creator><creator>Gorman, Stephen Michael</creator><creator>Klau Silverman, Elena</creator><creator>Clark, Michael</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems</title><author>Neto, Manuel De Araujo Pedreira ; Snyder, Jason Alan ; Gorman, Stephen Michael ; Klau Silverman, Elena ; Clark, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11694119B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Neto, Manuel De Araujo Pedreira</creatorcontrib><creatorcontrib>Snyder, Jason Alan</creatorcontrib><creatorcontrib>Gorman, Stephen Michael</creatorcontrib><creatorcontrib>Klau Silverman, Elena</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neto, Manuel De Araujo Pedreira</au><au>Snyder, Jason Alan</au><au>Gorman, Stephen Michael</au><au>Klau Silverman, Elena</au><au>Clark, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems</title><date>2023-07-04</date><risdate>2023</risdate><abstract>The Multidimensional Machine Learning Data and User Interface Segment Tagging Engine Apparatuses, Methods and Systems ("MLUI") transforms ambient condition data, sales data, user interface selections, cognitive intelligence question input inputs via MLUI components into project projections, campaigns, user interface visualizations, cognitive intelligence question output outputs. A category identifier selection is obtained via a category selection interaction interface mechanism. Entity segment identifier selections are obtained via entity segment selection interaction interface mechanisms. A set of visualization cognitive intelligence (CI) datapoint identifiers is determined as CI datapoint identifiers associated with each combination of a selected entity segment identifier and the selected category identifier. CI datapoint values corresponding to the set of visualization CI datapoint identifiers are retrieved from a NoSQL database configured to act as cache for generating visualizations based on metrics calculated using survey data. A visualization is generated using the retrieved CI datapoint values.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11694119B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Multidimensional machine learning data and user interface segment tagging engine apparatuses, methods and systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Neto,%20Manuel%20De%20Araujo%20Pedreira&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11694119B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true