System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data
In accordance with various embodiments, described herein are systems and methods for use of computer-implemented machine learning to automatically determine insights of facts, segments, outliers, or other information associated with a set of data, for use in generating visualizations of the data. In...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Belyaev, Victor Raj, Alvin Chowdhury, Saugata Mittal, Ashish Mascarenhas, Alextair Fernandez, Steve Simon Joseph Rubin, Gabby Lotia, Samar Fuller, John |
description | In accordance with various embodiments, described herein are systems and methods for use of computer-implemented machine learning to automatically determine insights of facts, segments, outliers, or other information associated with a set of data, for use in generating visualizations of the data. In accordance with an embodiment, the system can use a machine learning process to automatically determine one or more outliers or findings within the data, based on, for example, determining a plurality of combinations representing pairs of attribute dimensions within a data set, from which a general explanation or pattern can be determined for one or more attributes, and then comparing particular values for attributes, with the determined pattern for those attributes. Information describing such outliers or findings can be graphically displayed at a user interface, as text, graphs, charts, or other types of visualizations, and used as a starting point for further analysis of the data set. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11694118B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11694118B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11694118B23</originalsourceid><addsrcrecordid>eNqNzT0KwkAQBeA0FqLeYTyAxaqItopiH63DsJlkB_YnZGYVbby6RjyA1YPH93jj4lU-RCkAxhoCqUs1NKmHGhXhxpLR8xOVU4QsHFsIaB1HAk_Yx6EYhpg1hY-ywFG4dQqpgZTVM_UCKJIso1INd1YHCEJfMZxMi1GDXmj2y0kxPx0vh_OCulSRdGgpklbX0pjNbm3Mdr9c_WPeDxNJIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data</title><source>esp@cenet</source><creator>Belyaev, Victor ; Raj, Alvin ; Chowdhury, Saugata ; Mittal, Ashish ; Mascarenhas, Alextair ; Fernandez, Steve Simon Joseph ; Rubin, Gabby ; Lotia, Samar ; Fuller, John</creator><creatorcontrib>Belyaev, Victor ; Raj, Alvin ; Chowdhury, Saugata ; Mittal, Ashish ; Mascarenhas, Alextair ; Fernandez, Steve Simon Joseph ; Rubin, Gabby ; Lotia, Samar ; Fuller, John</creatorcontrib><description>In accordance with various embodiments, described herein are systems and methods for use of computer-implemented machine learning to automatically determine insights of facts, segments, outliers, or other information associated with a set of data, for use in generating visualizations of the data. In accordance with an embodiment, the system can use a machine learning process to automatically determine one or more outliers or findings within the data, based on, for example, determining a plurality of combinations representing pairs of attribute dimensions within a data set, from which a general explanation or pattern can be determined for one or more attributes, and then comparing particular values for attributes, with the determined pattern for those attributes. Information describing such outliers or findings can be graphically displayed at a user interface, as text, graphs, charts, or other types of visualizations, and used as a starting point for further analysis of the data set.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230704&DB=EPODOC&CC=US&NR=11694118B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230704&DB=EPODOC&CC=US&NR=11694118B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Belyaev, Victor</creatorcontrib><creatorcontrib>Raj, Alvin</creatorcontrib><creatorcontrib>Chowdhury, Saugata</creatorcontrib><creatorcontrib>Mittal, Ashish</creatorcontrib><creatorcontrib>Mascarenhas, Alextair</creatorcontrib><creatorcontrib>Fernandez, Steve Simon Joseph</creatorcontrib><creatorcontrib>Rubin, Gabby</creatorcontrib><creatorcontrib>Lotia, Samar</creatorcontrib><creatorcontrib>Fuller, John</creatorcontrib><title>System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data</title><description>In accordance with various embodiments, described herein are systems and methods for use of computer-implemented machine learning to automatically determine insights of facts, segments, outliers, or other information associated with a set of data, for use in generating visualizations of the data. In accordance with an embodiment, the system can use a machine learning process to automatically determine one or more outliers or findings within the data, based on, for example, determining a plurality of combinations representing pairs of attribute dimensions within a data set, from which a general explanation or pattern can be determined for one or more attributes, and then comparing particular values for attributes, with the determined pattern for those attributes. Information describing such outliers or findings can be graphically displayed at a user interface, as text, graphs, charts, or other types of visualizations, and used as a starting point for further analysis of the data set.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzT0KwkAQBeA0FqLeYTyAxaqItopiH63DsJlkB_YnZGYVbby6RjyA1YPH93jj4lU-RCkAxhoCqUs1NKmHGhXhxpLR8xOVU4QsHFsIaB1HAk_Yx6EYhpg1hY-ywFG4dQqpgZTVM_UCKJIso1INd1YHCEJfMZxMi1GDXmj2y0kxPx0vh_OCulSRdGgpklbX0pjNbm3Mdr9c_WPeDxNJIw</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Belyaev, Victor</creator><creator>Raj, Alvin</creator><creator>Chowdhury, Saugata</creator><creator>Mittal, Ashish</creator><creator>Mascarenhas, Alextair</creator><creator>Fernandez, Steve Simon Joseph</creator><creator>Rubin, Gabby</creator><creator>Lotia, Samar</creator><creator>Fuller, John</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data</title><author>Belyaev, Victor ; Raj, Alvin ; Chowdhury, Saugata ; Mittal, Ashish ; Mascarenhas, Alextair ; Fernandez, Steve Simon Joseph ; Rubin, Gabby ; Lotia, Samar ; Fuller, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11694118B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Belyaev, Victor</creatorcontrib><creatorcontrib>Raj, Alvin</creatorcontrib><creatorcontrib>Chowdhury, Saugata</creatorcontrib><creatorcontrib>Mittal, Ashish</creatorcontrib><creatorcontrib>Mascarenhas, Alextair</creatorcontrib><creatorcontrib>Fernandez, Steve Simon Joseph</creatorcontrib><creatorcontrib>Rubin, Gabby</creatorcontrib><creatorcontrib>Lotia, Samar</creatorcontrib><creatorcontrib>Fuller, John</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Belyaev, Victor</au><au>Raj, Alvin</au><au>Chowdhury, Saugata</au><au>Mittal, Ashish</au><au>Mascarenhas, Alextair</au><au>Fernandez, Steve Simon Joseph</au><au>Rubin, Gabby</au><au>Lotia, Samar</au><au>Fuller, John</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data</title><date>2023-07-04</date><risdate>2023</risdate><abstract>In accordance with various embodiments, described herein are systems and methods for use of computer-implemented machine learning to automatically determine insights of facts, segments, outliers, or other information associated with a set of data, for use in generating visualizations of the data. In accordance with an embodiment, the system can use a machine learning process to automatically determine one or more outliers or findings within the data, based on, for example, determining a plurality of combinations representing pairs of attribute dimensions within a data set, from which a general explanation or pattern can be determined for one or more attributes, and then comparing particular values for attributes, with the determined pattern for those attributes. Information describing such outliers or findings can be graphically displayed at a user interface, as text, graphs, charts, or other types of visualizations, and used as a starting point for further analysis of the data set.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11694118B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | System and method for data visualization using machine learning and automatic insight of outliers associated with a set of data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Belyaev,%20Victor&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11694118B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |