Cryogenic wafer test system

One example includes a cryogenic wafer test system. The system includes a first chamber that is cooled to a cryogenic temperature and a wafer chuck confined within the first chamber. The wafer chuck can be configured to accommodate a wafer device-under-test (DUT) comprising a plurality of supercondu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Osborne, Joshua P, Van Dyke, Jonathan Francis, Wakamiya, Stanley Katsuyoshi, Collao, Kevin, Sage, Tessandra Anne
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Osborne, Joshua P
Van Dyke, Jonathan Francis
Wakamiya, Stanley Katsuyoshi
Collao, Kevin
Sage, Tessandra Anne
description One example includes a cryogenic wafer test system. The system includes a first chamber that is cooled to a cryogenic temperature and a wafer chuck confined within the first chamber. The wafer chuck can be configured to accommodate a wafer device-under-test (DUT) comprising a plurality of superconducting die. The system also includes at least one wafer prober configured to implement a test on a superconducting die of the plurality of superconducting die via a plurality of electrical probe contacts. The system further includes a wafer chuck actuator system confined within a second chamber. The wafer chuck actuator system can be configured to provide at least one of translational and rotational motion of the wafer chuck to facilitate alignment and contact of a plurality of electrical contacts of the superconducting die to the respective plurality of electrical probe contacts of the at least one wafer prober.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11693047B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11693047B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11693047B23</originalsourceid><addsrcrecordid>eNrjZJB2LqrMT0_Ny0xWKE9MSy1SKEktLlEoriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmaWxgYm5k5GxsSoAQCGdiOx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cryogenic wafer test system</title><source>esp@cenet</source><creator>Osborne, Joshua P ; Van Dyke, Jonathan Francis ; Wakamiya, Stanley Katsuyoshi ; Collao, Kevin ; Sage, Tessandra Anne</creator><creatorcontrib>Osborne, Joshua P ; Van Dyke, Jonathan Francis ; Wakamiya, Stanley Katsuyoshi ; Collao, Kevin ; Sage, Tessandra Anne</creatorcontrib><description>One example includes a cryogenic wafer test system. The system includes a first chamber that is cooled to a cryogenic temperature and a wafer chuck confined within the first chamber. The wafer chuck can be configured to accommodate a wafer device-under-test (DUT) comprising a plurality of superconducting die. The system also includes at least one wafer prober configured to implement a test on a superconducting die of the plurality of superconducting die via a plurality of electrical probe contacts. The system further includes a wafer chuck actuator system confined within a second chamber. The wafer chuck actuator system can be configured to provide at least one of translational and rotational motion of the wafer chuck to facilitate alignment and contact of a plurality of electrical contacts of the superconducting die to the respective plurality of electrical probe contacts of the at least one wafer prober.</description><language>eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=US&amp;NR=11693047B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=US&amp;NR=11693047B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Osborne, Joshua P</creatorcontrib><creatorcontrib>Van Dyke, Jonathan Francis</creatorcontrib><creatorcontrib>Wakamiya, Stanley Katsuyoshi</creatorcontrib><creatorcontrib>Collao, Kevin</creatorcontrib><creatorcontrib>Sage, Tessandra Anne</creatorcontrib><title>Cryogenic wafer test system</title><description>One example includes a cryogenic wafer test system. The system includes a first chamber that is cooled to a cryogenic temperature and a wafer chuck confined within the first chamber. The wafer chuck can be configured to accommodate a wafer device-under-test (DUT) comprising a plurality of superconducting die. The system also includes at least one wafer prober configured to implement a test on a superconducting die of the plurality of superconducting die via a plurality of electrical probe contacts. The system further includes a wafer chuck actuator system confined within a second chamber. The wafer chuck actuator system can be configured to provide at least one of translational and rotational motion of the wafer chuck to facilitate alignment and contact of a plurality of electrical contacts of the superconducting die to the respective plurality of electrical probe contacts of the at least one wafer prober.</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB2LqrMT0_Ny0xWKE9MSy1SKEktLlEoriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmaWxgYm5k5GxsSoAQCGdiOx</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Osborne, Joshua P</creator><creator>Van Dyke, Jonathan Francis</creator><creator>Wakamiya, Stanley Katsuyoshi</creator><creator>Collao, Kevin</creator><creator>Sage, Tessandra Anne</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>Cryogenic wafer test system</title><author>Osborne, Joshua P ; Van Dyke, Jonathan Francis ; Wakamiya, Stanley Katsuyoshi ; Collao, Kevin ; Sage, Tessandra Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11693047B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Osborne, Joshua P</creatorcontrib><creatorcontrib>Van Dyke, Jonathan Francis</creatorcontrib><creatorcontrib>Wakamiya, Stanley Katsuyoshi</creatorcontrib><creatorcontrib>Collao, Kevin</creatorcontrib><creatorcontrib>Sage, Tessandra Anne</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Osborne, Joshua P</au><au>Van Dyke, Jonathan Francis</au><au>Wakamiya, Stanley Katsuyoshi</au><au>Collao, Kevin</au><au>Sage, Tessandra Anne</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cryogenic wafer test system</title><date>2023-07-04</date><risdate>2023</risdate><abstract>One example includes a cryogenic wafer test system. The system includes a first chamber that is cooled to a cryogenic temperature and a wafer chuck confined within the first chamber. The wafer chuck can be configured to accommodate a wafer device-under-test (DUT) comprising a plurality of superconducting die. The system also includes at least one wafer prober configured to implement a test on a superconducting die of the plurality of superconducting die via a plurality of electrical probe contacts. The system further includes a wafer chuck actuator system confined within a second chamber. The wafer chuck actuator system can be configured to provide at least one of translational and rotational motion of the wafer chuck to facilitate alignment and contact of a plurality of electrical contacts of the superconducting die to the respective plurality of electrical probe contacts of the at least one wafer prober.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11693047B2
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Cryogenic wafer test system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Osborne,%20Joshua%20P&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11693047B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true