Data management forecasting from distributed tracing
A computer-implemented method for using machine learning to handle data in a computing system with improved efficiency can include obtaining a handling request associated with a data item, the handling request instructing the computing system to perform a handling operation with the data item, obtai...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zhou, Giulio Maas, Martin Christoph |
description | A computer-implemented method for using machine learning to handle data in a computing system with improved efficiency can include obtaining a handling request associated with a data item, the handling request instructing the computing system to perform a handling operation with the data item, obtaining a trace log comprising one or more distributed trace items, the one or more distributed trace items including data from each of one or more services interacting with the data item, providing the trace log to a data characteristic prediction model including one or more machine-learned models, receiving, in response to providing the trace log to the data characteristic prediction model, one or more data characteristic predictions associated with the data item, and selecting a handling operation of a plurality of candidate handling operations based at least in part on the one or more data characteristic predictions. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11687833B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11687833B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11687833B23</originalsourceid><addsrcrecordid>eNrjZDBxSSxJVMhNzEtMT81NzStRSMsvSk1OLC7JzEtXSCvKz1VIySwuKcpMKi1JTVEoKUpMBkrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQzMLcwtjYycjY2LUAABcEi1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data management forecasting from distributed tracing</title><source>esp@cenet</source><creator>Zhou, Giulio ; Maas, Martin Christoph</creator><creatorcontrib>Zhou, Giulio ; Maas, Martin Christoph</creatorcontrib><description>A computer-implemented method for using machine learning to handle data in a computing system with improved efficiency can include obtaining a handling request associated with a data item, the handling request instructing the computing system to perform a handling operation with the data item, obtaining a trace log comprising one or more distributed trace items, the one or more distributed trace items including data from each of one or more services interacting with the data item, providing the trace log to a data characteristic prediction model including one or more machine-learned models, receiving, in response to providing the trace log to the data characteristic prediction model, one or more data characteristic predictions associated with the data item, and selecting a handling operation of a plurality of candidate handling operations based at least in part on the one or more data characteristic predictions.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230627&DB=EPODOC&CC=US&NR=11687833B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230627&DB=EPODOC&CC=US&NR=11687833B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhou, Giulio</creatorcontrib><creatorcontrib>Maas, Martin Christoph</creatorcontrib><title>Data management forecasting from distributed tracing</title><description>A computer-implemented method for using machine learning to handle data in a computing system with improved efficiency can include obtaining a handling request associated with a data item, the handling request instructing the computing system to perform a handling operation with the data item, obtaining a trace log comprising one or more distributed trace items, the one or more distributed trace items including data from each of one or more services interacting with the data item, providing the trace log to a data characteristic prediction model including one or more machine-learned models, receiving, in response to providing the trace log to the data characteristic prediction model, one or more data characteristic predictions associated with the data item, and selecting a handling operation of a plurality of candidate handling operations based at least in part on the one or more data characteristic predictions.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBxSSxJVMhNzEtMT81NzStRSMsvSk1OLC7JzEtXSCvKz1VIySwuKcpMKi1JTVEoKUpMBkrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQzMLcwtjYycjY2LUAABcEi1k</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Zhou, Giulio</creator><creator>Maas, Martin Christoph</creator><scope>EVB</scope></search><sort><creationdate>20230627</creationdate><title>Data management forecasting from distributed tracing</title><author>Zhou, Giulio ; Maas, Martin Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11687833B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Giulio</creatorcontrib><creatorcontrib>Maas, Martin Christoph</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Giulio</au><au>Maas, Martin Christoph</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data management forecasting from distributed tracing</title><date>2023-06-27</date><risdate>2023</risdate><abstract>A computer-implemented method for using machine learning to handle data in a computing system with improved efficiency can include obtaining a handling request associated with a data item, the handling request instructing the computing system to perform a handling operation with the data item, obtaining a trace log comprising one or more distributed trace items, the one or more distributed trace items including data from each of one or more services interacting with the data item, providing the trace log to a data characteristic prediction model including one or more machine-learned models, receiving, in response to providing the trace log to the data characteristic prediction model, one or more data characteristic predictions associated with the data item, and selecting a handling operation of a plurality of candidate handling operations based at least in part on the one or more data characteristic predictions.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11687833B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Data management forecasting from distributed tracing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhou,%20Giulio&rft.date=2023-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11687833B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |