Automatic machine learning model generation
A system may automatically generate a predictive machine learning model by automatically performing various processes based on an analysis of the data as well as metadata associated with the data. The system may accept a selection of data and a prediction field from the data. The system may automati...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bergmann, Till Christian Masekera, Chalenge Ball, John Emery Lewis, James Reber Asher, Sara Beth Nabar, Shubha Gordon, Vitaly Dandekar, Nihar Kan, Kin Fai |
description | A system may automatically generate a predictive machine learning model by automatically performing various processes based on an analysis of the data as well as metadata associated with the data. The system may accept a selection of data and a prediction field from the data. The system may automatically generate a set of features based on the data and may automatically remove certain features that cause inaccuracies in the model. The system may balance the data based on a representation rate of certain outcomes. The system may train and select a model based on several candidate models. The system may then perform the predictions based on the selected model and send an indication of the predictions to a user. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11663517B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11663517B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11663517B23</originalsourceid><addsrcrecordid>eNrjZNB2LC3Jz00syUxWyE1MzsjMS1XISU0sysvMS1fIzU9JzVFIT81LLQIqyM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUClJfGhwYaGZmbGpobmTkbGxKgBAHyvKcs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic machine learning model generation</title><source>esp@cenet</source><creator>Bergmann, Till Christian ; Masekera, Chalenge ; Ball, John Emery ; Lewis, James Reber ; Asher, Sara Beth ; Nabar, Shubha ; Gordon, Vitaly ; Dandekar, Nihar ; Kan, Kin Fai</creator><creatorcontrib>Bergmann, Till Christian ; Masekera, Chalenge ; Ball, John Emery ; Lewis, James Reber ; Asher, Sara Beth ; Nabar, Shubha ; Gordon, Vitaly ; Dandekar, Nihar ; Kan, Kin Fai</creatorcontrib><description>A system may automatically generate a predictive machine learning model by automatically performing various processes based on an analysis of the data as well as metadata associated with the data. The system may accept a selection of data and a prediction field from the data. The system may automatically generate a set of features based on the data and may automatically remove certain features that cause inaccuracies in the model. The system may balance the data based on a representation rate of certain outcomes. The system may train and select a model based on several candidate models. The system may then perform the predictions based on the selected model and send an indication of the predictions to a user.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=US&NR=11663517B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=US&NR=11663517B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bergmann, Till Christian</creatorcontrib><creatorcontrib>Masekera, Chalenge</creatorcontrib><creatorcontrib>Ball, John Emery</creatorcontrib><creatorcontrib>Lewis, James Reber</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Gordon, Vitaly</creatorcontrib><creatorcontrib>Dandekar, Nihar</creatorcontrib><creatorcontrib>Kan, Kin Fai</creatorcontrib><title>Automatic machine learning model generation</title><description>A system may automatically generate a predictive machine learning model by automatically performing various processes based on an analysis of the data as well as metadata associated with the data. The system may accept a selection of data and a prediction field from the data. The system may automatically generate a set of features based on the data and may automatically remove certain features that cause inaccuracies in the model. The system may balance the data based on a representation rate of certain outcomes. The system may train and select a model based on several candidate models. The system may then perform the predictions based on the selected model and send an indication of the predictions to a user.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2LC3Jz00syUxWyE1MzsjMS1XISU0sysvMS1fIzU9JzVFIT81LLQIqyM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUClJfGhwYaGZmbGpobmTkbGxKgBAHyvKcs</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Bergmann, Till Christian</creator><creator>Masekera, Chalenge</creator><creator>Ball, John Emery</creator><creator>Lewis, James Reber</creator><creator>Asher, Sara Beth</creator><creator>Nabar, Shubha</creator><creator>Gordon, Vitaly</creator><creator>Dandekar, Nihar</creator><creator>Kan, Kin Fai</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Automatic machine learning model generation</title><author>Bergmann, Till Christian ; Masekera, Chalenge ; Ball, John Emery ; Lewis, James Reber ; Asher, Sara Beth ; Nabar, Shubha ; Gordon, Vitaly ; Dandekar, Nihar ; Kan, Kin Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11663517B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Bergmann, Till Christian</creatorcontrib><creatorcontrib>Masekera, Chalenge</creatorcontrib><creatorcontrib>Ball, John Emery</creatorcontrib><creatorcontrib>Lewis, James Reber</creatorcontrib><creatorcontrib>Asher, Sara Beth</creatorcontrib><creatorcontrib>Nabar, Shubha</creatorcontrib><creatorcontrib>Gordon, Vitaly</creatorcontrib><creatorcontrib>Dandekar, Nihar</creatorcontrib><creatorcontrib>Kan, Kin Fai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bergmann, Till Christian</au><au>Masekera, Chalenge</au><au>Ball, John Emery</au><au>Lewis, James Reber</au><au>Asher, Sara Beth</au><au>Nabar, Shubha</au><au>Gordon, Vitaly</au><au>Dandekar, Nihar</au><au>Kan, Kin Fai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic machine learning model generation</title><date>2023-05-30</date><risdate>2023</risdate><abstract>A system may automatically generate a predictive machine learning model by automatically performing various processes based on an analysis of the data as well as metadata associated with the data. The system may accept a selection of data and a prediction field from the data. The system may automatically generate a set of features based on the data and may automatically remove certain features that cause inaccuracies in the model. The system may balance the data based on a representation rate of certain outcomes. The system may train and select a model based on several candidate models. The system may then perform the predictions based on the selected model and send an indication of the predictions to a user.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11663517B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Automatic machine learning model generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bergmann,%20Till%20Christian&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11663517B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |