Cognitive horizon surveillance

A method for ranking relevance of documents includes using a set of queries, searching a corpus of documents for a set of candidate documents with information relevant to the set of queries. The method further includes ranking the set of candidate documents by a deep learning processing system accor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Narayan, Chandrasekhar, Gruhl, Daniel, Kato, Linda Ha, Gentile, Anna Lisa, Zubarev, Dmitry, Park, Nathaniel H, Alba, Alfredo, DeLuca, Chad Eric, Welch, Steven R, Ristoski, Petar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Narayan, Chandrasekhar
Gruhl, Daniel
Kato, Linda Ha
Gentile, Anna Lisa
Zubarev, Dmitry
Park, Nathaniel H
Alba, Alfredo
DeLuca, Chad Eric
Welch, Steven R
Ristoski, Petar
description A method for ranking relevance of documents includes using a set of queries, searching a corpus of documents for a set of candidate documents with information relevant to the set of queries. The method further includes ranking the set of candidate documents by a deep learning processing system according to relevance to respective ones of the set of queries. The method additionally includes responsive to user input, revising the ranked set of candidate documents to produce a revised ranked set of candidate documents. The method further includes using the revised ranked set of candidate documents to retrain the deep learning processing system. The method still further includes performing a categorization of the set of candidate documents by the retrained deep learning processing system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11663273B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11663273B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11663273B23</originalsourceid><addsrcrecordid>eNrjZJBzzk_PyyzJLEtVyMgvyqzKz1MoLi0qS83MyUnMS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZmxkbmxk5GxsSoAQAy2CUx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cognitive horizon surveillance</title><source>esp@cenet</source><creator>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar</creator><creatorcontrib>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar</creatorcontrib><description>A method for ranking relevance of documents includes using a set of queries, searching a corpus of documents for a set of candidate documents with information relevant to the set of queries. The method further includes ranking the set of candidate documents by a deep learning processing system according to relevance to respective ones of the set of queries. The method additionally includes responsive to user input, revising the ranked set of candidate documents to produce a revised ranked set of candidate documents. The method further includes using the revised ranked set of candidate documents to retrain the deep learning processing system. The method still further includes performing a categorization of the set of candidate documents by the retrained deep learning processing system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230530&amp;DB=EPODOC&amp;CC=US&amp;NR=11663273B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230530&amp;DB=EPODOC&amp;CC=US&amp;NR=11663273B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><title>Cognitive horizon surveillance</title><description>A method for ranking relevance of documents includes using a set of queries, searching a corpus of documents for a set of candidate documents with information relevant to the set of queries. The method further includes ranking the set of candidate documents by a deep learning processing system according to relevance to respective ones of the set of queries. The method additionally includes responsive to user input, revising the ranked set of candidate documents to produce a revised ranked set of candidate documents. The method further includes using the revised ranked set of candidate documents to retrain the deep learning processing system. The method still further includes performing a categorization of the set of candidate documents by the retrained deep learning processing system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBzzk_PyyzJLEtVyMgvyqzKz1MoLi0qS83MyUnMS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZmxkbmxk5GxsSoAQAy2CUx</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Narayan, Chandrasekhar</creator><creator>Gruhl, Daniel</creator><creator>Kato, Linda Ha</creator><creator>Gentile, Anna Lisa</creator><creator>Zubarev, Dmitry</creator><creator>Park, Nathaniel H</creator><creator>Alba, Alfredo</creator><creator>DeLuca, Chad Eric</creator><creator>Welch, Steven R</creator><creator>Ristoski, Petar</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Cognitive horizon surveillance</title><author>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11663273B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayan, Chandrasekhar</au><au>Gruhl, Daniel</au><au>Kato, Linda Ha</au><au>Gentile, Anna Lisa</au><au>Zubarev, Dmitry</au><au>Park, Nathaniel H</au><au>Alba, Alfredo</au><au>DeLuca, Chad Eric</au><au>Welch, Steven R</au><au>Ristoski, Petar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cognitive horizon surveillance</title><date>2023-05-30</date><risdate>2023</risdate><abstract>A method for ranking relevance of documents includes using a set of queries, searching a corpus of documents for a set of candidate documents with information relevant to the set of queries. The method further includes ranking the set of candidate documents by a deep learning processing system according to relevance to respective ones of the set of queries. The method additionally includes responsive to user input, revising the ranked set of candidate documents to produce a revised ranked set of candidate documents. The method further includes using the revised ranked set of candidate documents to retrain the deep learning processing system. The method still further includes performing a categorization of the set of candidate documents by the retrained deep learning processing system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11663273B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Cognitive horizon surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Narayan,%20Chandrasekhar&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11663273B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true