Quantile regression analysis method for detecting cyber attacks

A system and method for detecting cyber-attacks using quantile regression analysis are disclosed. The method includes identifying at least one hit quantile out of a plurality of quantiles, wherein at least one sample of traffic directed at a protected entity falls within quantile edges of the at lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aviv, David, Medvedovsky, Lev
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Aviv, David
Medvedovsky, Lev
description A system and method for detecting cyber-attacks using quantile regression analysis are disclosed. The method includes identifying at least one hit quantile out of a plurality of quantiles, wherein at least one sample of traffic directed at a protected entity falls within quantile edges of the at least one identified hit quantile, wherein each of the plurality of quantiles is characterized by a probability distribution of at least one feature of a data stream, each of the plurality of quantiles having a respective probability estimate of bytes to fall into it; updating the probability estimates of the plurality of quantiles when the hit quantile has been identified; determining if the probability estimate of the at least one hit quantile is above a threshold; and detecting a cyber-attack when the probability estimate of the at least one hit quantile is above the threshold.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11652843B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11652843B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11652843B13</originalsourceid><addsrcrecordid>eNrjZLAPLE3MK8nMSVUoSk0vSi0uzszPU0jMS8ypLM4sVshNLcnIT1FIyy9SSEktSU0uycxLV0iuTEotUkgsKUlMzi7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmamRhYmxk6GxsSoAQDaJDGb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Quantile regression analysis method for detecting cyber attacks</title><source>esp@cenet</source><creator>Aviv, David ; Medvedovsky, Lev</creator><creatorcontrib>Aviv, David ; Medvedovsky, Lev</creatorcontrib><description>A system and method for detecting cyber-attacks using quantile regression analysis are disclosed. The method includes identifying at least one hit quantile out of a plurality of quantiles, wherein at least one sample of traffic directed at a protected entity falls within quantile edges of the at least one identified hit quantile, wherein each of the plurality of quantiles is characterized by a probability distribution of at least one feature of a data stream, each of the plurality of quantiles having a respective probability estimate of bytes to fall into it; updating the probability estimates of the plurality of quantiles when the hit quantile has been identified; determining if the probability estimate of the at least one hit quantile is above a threshold; and detecting a cyber-attack when the probability estimate of the at least one hit quantile is above the threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230516&amp;DB=EPODOC&amp;CC=US&amp;NR=11652843B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230516&amp;DB=EPODOC&amp;CC=US&amp;NR=11652843B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Aviv, David</creatorcontrib><creatorcontrib>Medvedovsky, Lev</creatorcontrib><title>Quantile regression analysis method for detecting cyber attacks</title><description>A system and method for detecting cyber-attacks using quantile regression analysis are disclosed. The method includes identifying at least one hit quantile out of a plurality of quantiles, wherein at least one sample of traffic directed at a protected entity falls within quantile edges of the at least one identified hit quantile, wherein each of the plurality of quantiles is characterized by a probability distribution of at least one feature of a data stream, each of the plurality of quantiles having a respective probability estimate of bytes to fall into it; updating the probability estimates of the plurality of quantiles when the hit quantile has been identified; determining if the probability estimate of the at least one hit quantile is above a threshold; and detecting a cyber-attack when the probability estimate of the at least one hit quantile is above the threshold.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAPLE3MK8nMSVUoSk0vSi0uzszPU0jMS8ypLM4sVshNLcnIT1FIyy9SSEktSU0uycxLV0iuTEotUkgsKUlMzi7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmamRhYmxk6GxsSoAQDaJDGb</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Aviv, David</creator><creator>Medvedovsky, Lev</creator><scope>EVB</scope></search><sort><creationdate>20230516</creationdate><title>Quantile regression analysis method for detecting cyber attacks</title><author>Aviv, David ; Medvedovsky, Lev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11652843B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Aviv, David</creatorcontrib><creatorcontrib>Medvedovsky, Lev</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aviv, David</au><au>Medvedovsky, Lev</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Quantile regression analysis method for detecting cyber attacks</title><date>2023-05-16</date><risdate>2023</risdate><abstract>A system and method for detecting cyber-attacks using quantile regression analysis are disclosed. The method includes identifying at least one hit quantile out of a plurality of quantiles, wherein at least one sample of traffic directed at a protected entity falls within quantile edges of the at least one identified hit quantile, wherein each of the plurality of quantiles is characterized by a probability distribution of at least one feature of a data stream, each of the plurality of quantiles having a respective probability estimate of bytes to fall into it; updating the probability estimates of the plurality of quantiles when the hit quantile has been identified; determining if the probability estimate of the at least one hit quantile is above a threshold; and detecting a cyber-attack when the probability estimate of the at least one hit quantile is above the threshold.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11652843B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Quantile regression analysis method for detecting cyber attacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Aviv,%20David&rft.date=2023-05-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11652843B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true