Automated machine learning tagging and optimization of review procedures

Techniques for machine learning optimization are provided. A video comprising a plurality of segments is received, and a first segment of the plurality of segments is processed with a machine learning (ML) model to generate a plurality of tags, where each of the plurality of tags indicates presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farré Guiu, Miquel Angel, Junyent Martin, Marc, Alfaro Vendrell, Monica, Accardo, Anthony M
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Farré Guiu, Miquel Angel
Junyent Martin, Marc
Alfaro Vendrell, Monica
Accardo, Anthony M
description Techniques for machine learning optimization are provided. A video comprising a plurality of segments is received, and a first segment of the plurality of segments is processed with a machine learning (ML) model to generate a plurality of tags, where each of the plurality of tags indicates presence of an element in the first segment. A respective accuracy value is determined for each respective tag of the plurality of tags, where the respective accuracy value is based at least in part on a maturity score for the ML model. The first segment is classified as accurate, based on determining that an aggregate accuracy of tags corresponding to the first segment exceeds a predefined threshold. Upon classifying the first segment as accurate, the first segment is bypassed during a review process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11645579B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11645579B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11645579B23</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w_kBDlVrcVRRuqtzOZJrPGjuQpIq-PUi-AFOb3lT0x7GogELOQhoHywEA2ESFg8Fvf-K4kBj4cBvLKwC2kOiJ9MLYlJLbkyU52bS45Bp8XNmlpfz7dSuKGpHOaIlodLdr1W129Z1sz-uN_-cD-ghNRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated machine learning tagging and optimization of review procedures</title><source>esp@cenet</source><creator>Farré Guiu, Miquel Angel ; Junyent Martin, Marc ; Alfaro Vendrell, Monica ; Accardo, Anthony M</creator><creatorcontrib>Farré Guiu, Miquel Angel ; Junyent Martin, Marc ; Alfaro Vendrell, Monica ; Accardo, Anthony M</creatorcontrib><description>Techniques for machine learning optimization are provided. A video comprising a plurality of segments is received, and a first segment of the plurality of segments is processed with a machine learning (ML) model to generate a plurality of tags, where each of the plurality of tags indicates presence of an element in the first segment. A respective accuracy value is determined for each respective tag of the plurality of tags, where the respective accuracy value is based at least in part on a maturity score for the ML model. The first segment is classified as accurate, based on determining that an aggregate accuracy of tags corresponding to the first segment exceeds a predefined threshold. Upon classifying the first segment as accurate, the first segment is bypassed during a review process.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230509&amp;DB=EPODOC&amp;CC=US&amp;NR=11645579B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230509&amp;DB=EPODOC&amp;CC=US&amp;NR=11645579B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Farré Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Junyent Martin, Marc</creatorcontrib><creatorcontrib>Alfaro Vendrell, Monica</creatorcontrib><creatorcontrib>Accardo, Anthony M</creatorcontrib><title>Automated machine learning tagging and optimization of review procedures</title><description>Techniques for machine learning optimization are provided. A video comprising a plurality of segments is received, and a first segment of the plurality of segments is processed with a machine learning (ML) model to generate a plurality of tags, where each of the plurality of tags indicates presence of an element in the first segment. A respective accuracy value is determined for each respective tag of the plurality of tags, where the respective accuracy value is based at least in part on a maturity score for the ML model. The first segment is classified as accurate, based on determining that an aggregate accuracy of tags corresponding to the first segment exceeds a predefined threshold. Upon classifying the first segment as accurate, the first segment is bypassed during a review process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w_kBDlVrcVRRuqtzOZJrPGjuQpIq-PUi-AFOb3lT0x7GogELOQhoHywEA2ESFg8Fvf-K4kBj4cBvLKwC2kOiJ9MLYlJLbkyU52bS45Bp8XNmlpfz7dSuKGpHOaIlodLdr1W129Z1sz-uN_-cD-ghNRY</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Farré Guiu, Miquel Angel</creator><creator>Junyent Martin, Marc</creator><creator>Alfaro Vendrell, Monica</creator><creator>Accardo, Anthony M</creator><scope>EVB</scope></search><sort><creationdate>20230509</creationdate><title>Automated machine learning tagging and optimization of review procedures</title><author>Farré Guiu, Miquel Angel ; Junyent Martin, Marc ; Alfaro Vendrell, Monica ; Accardo, Anthony M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11645579B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Farré Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Junyent Martin, Marc</creatorcontrib><creatorcontrib>Alfaro Vendrell, Monica</creatorcontrib><creatorcontrib>Accardo, Anthony M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farré Guiu, Miquel Angel</au><au>Junyent Martin, Marc</au><au>Alfaro Vendrell, Monica</au><au>Accardo, Anthony M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated machine learning tagging and optimization of review procedures</title><date>2023-05-09</date><risdate>2023</risdate><abstract>Techniques for machine learning optimization are provided. A video comprising a plurality of segments is received, and a first segment of the plurality of segments is processed with a machine learning (ML) model to generate a plurality of tags, where each of the plurality of tags indicates presence of an element in the first segment. A respective accuracy value is determined for each respective tag of the plurality of tags, where the respective accuracy value is based at least in part on a maturity score for the ML model. The first segment is classified as accurate, based on determining that an aggregate accuracy of tags corresponding to the first segment exceeds a predefined threshold. Upon classifying the first segment as accurate, the first segment is bypassed during a review process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11645579B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automated machine learning tagging and optimization of review procedures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Farr%C3%A9%20Guiu,%20Miquel%20Angel&rft.date=2023-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11645579B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true