Cognitive analysis for enterprise decision meta model

A computer implemented method is provided that includes creating an industry force graph meta model; and establishing a relationship for each maturity dimension to determine most relevant content. The most relevant content is graphed using a chromatic polynomial to map strongest industry trends in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daley, Stan Kevin, Sundararajan, Mukundan, Sukhija, Sandeep, Stavarache, Lucia Larise, Saxena, Rajesh Kumar, Bharti, Harish
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Daley, Stan Kevin
Sundararajan, Mukundan
Sukhija, Sandeep
Stavarache, Lucia Larise
Saxena, Rajesh Kumar
Bharti, Harish
description A computer implemented method is provided that includes creating an industry force graph meta model; and establishing a relationship for each maturity dimension to determine most relevant content. The most relevant content is graphed using a chromatic polynomial to map strongest industry trends in an industry force. The method continues with building traversal logic to determine most relevant technologies for the strongest industry trends in the industry force. Most relevant components of an component business model are identified, and linkages between the strongest industry trends in the industry force are made to the most relevant components of the component business model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11636417B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11636417B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11636417B23</originalsourceid><addsrcrecordid>eNrjZDB1zk_PyyzJLEtVSMxLzKkszixWSMsvUkjNK0ktKijKLE5VSElNzizOzM9TyE0tSVTIzU9JzeFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaGZsZmJobmTkbGxKgBAJN-LaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cognitive analysis for enterprise decision meta model</title><source>esp@cenet</source><creator>Daley, Stan Kevin ; Sundararajan, Mukundan ; Sukhija, Sandeep ; Stavarache, Lucia Larise ; Saxena, Rajesh Kumar ; Bharti, Harish</creator><creatorcontrib>Daley, Stan Kevin ; Sundararajan, Mukundan ; Sukhija, Sandeep ; Stavarache, Lucia Larise ; Saxena, Rajesh Kumar ; Bharti, Harish</creatorcontrib><description>A computer implemented method is provided that includes creating an industry force graph meta model; and establishing a relationship for each maturity dimension to determine most relevant content. The most relevant content is graphed using a chromatic polynomial to map strongest industry trends in an industry force. The method continues with building traversal logic to determine most relevant technologies for the strongest industry trends in the industry force. Most relevant components of an component business model are identified, and linkages between the strongest industry trends in the industry force are made to the most relevant components of the component business model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=US&amp;NR=11636417B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=US&amp;NR=11636417B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Daley, Stan Kevin</creatorcontrib><creatorcontrib>Sundararajan, Mukundan</creatorcontrib><creatorcontrib>Sukhija, Sandeep</creatorcontrib><creatorcontrib>Stavarache, Lucia Larise</creatorcontrib><creatorcontrib>Saxena, Rajesh Kumar</creatorcontrib><creatorcontrib>Bharti, Harish</creatorcontrib><title>Cognitive analysis for enterprise decision meta model</title><description>A computer implemented method is provided that includes creating an industry force graph meta model; and establishing a relationship for each maturity dimension to determine most relevant content. The most relevant content is graphed using a chromatic polynomial to map strongest industry trends in an industry force. The method continues with building traversal logic to determine most relevant technologies for the strongest industry trends in the industry force. Most relevant components of an component business model are identified, and linkages between the strongest industry trends in the industry force are made to the most relevant components of the component business model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1zk_PyyzJLEtVSMxLzKkszixWSMsvUkjNK0ktKijKLE5VSElNzizOzM9TyE0tSVTIzU9JzeFhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaGZsZmJobmTkbGxKgBAJN-LaQ</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Daley, Stan Kevin</creator><creator>Sundararajan, Mukundan</creator><creator>Sukhija, Sandeep</creator><creator>Stavarache, Lucia Larise</creator><creator>Saxena, Rajesh Kumar</creator><creator>Bharti, Harish</creator><scope>EVB</scope></search><sort><creationdate>20230425</creationdate><title>Cognitive analysis for enterprise decision meta model</title><author>Daley, Stan Kevin ; Sundararajan, Mukundan ; Sukhija, Sandeep ; Stavarache, Lucia Larise ; Saxena, Rajesh Kumar ; Bharti, Harish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11636417B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Daley, Stan Kevin</creatorcontrib><creatorcontrib>Sundararajan, Mukundan</creatorcontrib><creatorcontrib>Sukhija, Sandeep</creatorcontrib><creatorcontrib>Stavarache, Lucia Larise</creatorcontrib><creatorcontrib>Saxena, Rajesh Kumar</creatorcontrib><creatorcontrib>Bharti, Harish</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daley, Stan Kevin</au><au>Sundararajan, Mukundan</au><au>Sukhija, Sandeep</au><au>Stavarache, Lucia Larise</au><au>Saxena, Rajesh Kumar</au><au>Bharti, Harish</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cognitive analysis for enterprise decision meta model</title><date>2023-04-25</date><risdate>2023</risdate><abstract>A computer implemented method is provided that includes creating an industry force graph meta model; and establishing a relationship for each maturity dimension to determine most relevant content. The most relevant content is graphed using a chromatic polynomial to map strongest industry trends in an industry force. The method continues with building traversal logic to determine most relevant technologies for the strongest industry trends in the industry force. Most relevant components of an component business model are identified, and linkages between the strongest industry trends in the industry force are made to the most relevant components of the component business model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11636417B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Cognitive analysis for enterprise decision meta model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Daley,%20Stan%20Kevin&rft.date=2023-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11636417B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true