Adversarial learning of driving behavior

Embodiments described herein disclose methods and systems for adversarial learning in autonomous vehicle path modeling. The systems and methods collect states of the vehicle in the environment to predict a path. The predicted path is compared for variance from an actual path. The variance between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Olabiyi, Oluwatobi O
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Olabiyi, Oluwatobi O
description Embodiments described herein disclose methods and systems for adversarial learning in autonomous vehicle path modeling. The systems and methods collect states of the vehicle in the environment to predict a path. The predicted path is compared for variance from an actual path. The variance between the paths, in light of other data, is used to modify the driving models, to create more accurate representations of expert driving in autonomous vehicle path generation.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11636375B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11636375B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11636375B23</originalsourceid><addsrcrecordid>eNrjZNBwTClLLSpOLMpMzFHISU0sysvMS1fIT1NIKcosAzGTUjMSyzLzi3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhmbGZsbmpk5ExMWoA4ZIomQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adversarial learning of driving behavior</title><source>esp@cenet</source><creator>Olabiyi, Oluwatobi O</creator><creatorcontrib>Olabiyi, Oluwatobi O</creatorcontrib><description>Embodiments described herein disclose methods and systems for adversarial learning in autonomous vehicle path modeling. The systems and methods collect states of the vehicle in the environment to predict a path. The predicted path is compared for variance from an actual path. The variance between the paths, in light of other data, is used to modify the driving models, to create more accurate representations of expert driving in autonomous vehicle path generation.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=US&amp;NR=11636375B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=US&amp;NR=11636375B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Olabiyi, Oluwatobi O</creatorcontrib><title>Adversarial learning of driving behavior</title><description>Embodiments described herein disclose methods and systems for adversarial learning in autonomous vehicle path modeling. The systems and methods collect states of the vehicle in the environment to predict a path. The predicted path is compared for variance from an actual path. The variance between the paths, in light of other data, is used to modify the driving models, to create more accurate representations of expert driving in autonomous vehicle path generation.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwTClLLSpOLMpMzFHISU0sysvMS1fIT1NIKcosAzGTUjMSyzLzi3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhmbGZsbmpk5ExMWoA4ZIomQ</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Olabiyi, Oluwatobi O</creator><scope>EVB</scope></search><sort><creationdate>20230425</creationdate><title>Adversarial learning of driving behavior</title><author>Olabiyi, Oluwatobi O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11636375B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>Olabiyi, Oluwatobi O</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olabiyi, Oluwatobi O</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adversarial learning of driving behavior</title><date>2023-04-25</date><risdate>2023</risdate><abstract>Embodiments described herein disclose methods and systems for adversarial learning in autonomous vehicle path modeling. The systems and methods collect states of the vehicle in the environment to predict a path. The predicted path is compared for variance from an actual path. The variance between the paths, in light of other data, is used to modify the driving models, to create more accurate representations of expert driving in autonomous vehicle path generation.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11636375B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING
COUNTING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Adversarial learning of driving behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Olabiyi,%20Oluwatobi%20O&rft.date=2023-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11636375B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true