Determining topic labels for communication transcripts based on a trained generative summarization model

The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Asi, Abedelkader, Ronen, Royi, Rosenthal, Tomer, Shaanan, Rona, Altus, Erez, Kuper, Yarin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Asi, Abedelkader
Ronen, Royi
Rosenthal, Tomer
Shaanan, Rona
Altus, Erez
Kuper, Yarin
description The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11630958B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11630958B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11630958B23</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywGQCBEIWn6iB-po42zCSvba8joUnB4jOADV0xvNjIvHkRJFx8LSQ_KBDVhsyCp0PoLxzg3CBhN7gRRR1EQOSaFBpRYyxA9myacnoZjNJ4EOzmHk17dzviU7LUYdWqXZbyfF_Hy6HS4LCr4mDWhynur7tSw31XK33u5X1T_OG4VZQXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determining topic labels for communication transcripts based on a trained generative summarization model</title><source>esp@cenet</source><creator>Asi, Abedelkader ; Ronen, Royi ; Rosenthal, Tomer ; Shaanan, Rona ; Altus, Erez ; Kuper, Yarin</creator><creatorcontrib>Asi, Abedelkader ; Ronen, Royi ; Rosenthal, Tomer ; Shaanan, Rona ; Altus, Erez ; Kuper, Yarin</creatorcontrib><description>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230418&amp;DB=EPODOC&amp;CC=US&amp;NR=11630958B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230418&amp;DB=EPODOC&amp;CC=US&amp;NR=11630958B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Asi, Abedelkader</creatorcontrib><creatorcontrib>Ronen, Royi</creatorcontrib><creatorcontrib>Rosenthal, Tomer</creatorcontrib><creatorcontrib>Shaanan, Rona</creatorcontrib><creatorcontrib>Altus, Erez</creatorcontrib><creatorcontrib>Kuper, Yarin</creatorcontrib><title>Determining topic labels for communication transcripts based on a trained generative summarization model</title><description>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywGQCBEIWn6iB-po42zCSvba8joUnB4jOADV0xvNjIvHkRJFx8LSQ_KBDVhsyCp0PoLxzg3CBhN7gRRR1EQOSaFBpRYyxA9myacnoZjNJ4EOzmHk17dzviU7LUYdWqXZbyfF_Hy6HS4LCr4mDWhynur7tSw31XK33u5X1T_OG4VZQXk</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Asi, Abedelkader</creator><creator>Ronen, Royi</creator><creator>Rosenthal, Tomer</creator><creator>Shaanan, Rona</creator><creator>Altus, Erez</creator><creator>Kuper, Yarin</creator><scope>EVB</scope></search><sort><creationdate>20230418</creationdate><title>Determining topic labels for communication transcripts based on a trained generative summarization model</title><author>Asi, Abedelkader ; Ronen, Royi ; Rosenthal, Tomer ; Shaanan, Rona ; Altus, Erez ; Kuper, Yarin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11630958B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Asi, Abedelkader</creatorcontrib><creatorcontrib>Ronen, Royi</creatorcontrib><creatorcontrib>Rosenthal, Tomer</creatorcontrib><creatorcontrib>Shaanan, Rona</creatorcontrib><creatorcontrib>Altus, Erez</creatorcontrib><creatorcontrib>Kuper, Yarin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asi, Abedelkader</au><au>Ronen, Royi</au><au>Rosenthal, Tomer</au><au>Shaanan, Rona</au><au>Altus, Erez</au><au>Kuper, Yarin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determining topic labels for communication transcripts based on a trained generative summarization model</title><date>2023-04-18</date><risdate>2023</risdate><abstract>The disclosure herein describes determining topics of communication transcripts using trained summarization models. A first communication transcript associated with a first communication is obtained and divided into a first set of communication segments. A first set of topic descriptions is generated based on the first set of communication segments by analyzing each communication segment of the first set of communication segments with a generative language model. A summarization model is trained using the first set of communication segments and associated first set of topic descriptions as training data. The trained summarization model is then applied to a second communication transcript and, based on applying the trained summarization model to the second communication transcript, a second set of topic descriptions of the second communication transcript is generated. By training the summarization model based on output of the generative language model, it enables efficient, accurate generation of topic descriptions from communication transcripts.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11630958B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Determining topic labels for communication transcripts based on a trained generative summarization model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Asi,%20Abedelkader&rft.date=2023-04-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11630958B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true