Coil mixing error matrix and deep learning for prospective motion assessment

Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Clifford, Bryan, Lo, Wei-Ching, Polak, Daniel, Splitthoff, Daniel Nicolas, Hossbach, Julian, Cauley, Stephen Farman
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Clifford, Bryan
Lo, Wei-Ching
Polak, Daniel
Splitthoff, Daniel Nicolas
Hossbach, Julian
Cauley, Stephen Farman
description Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11630177B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11630177B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11630177B23</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuFtLES9w3gAwRgwfYJiYafWYUj-yMLu7DKzSI6vggewesX3lu7aJR8o-tnLk6CalCIX9TOxjDQCmQJY5cvTB7MmyxiKf4FiKj4JsRnMIqSs3WLiYNj8unLb8-neXXbIqYdlHiAo_eNWVcd6XzVNe6j_ed7C3zZl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Coil mixing error matrix and deep learning for prospective motion assessment</title><source>esp@cenet</source><creator>Clifford, Bryan ; Lo, Wei-Ching ; Polak, Daniel ; Splitthoff, Daniel Nicolas ; Hossbach, Julian ; Cauley, Stephen Farman</creator><creatorcontrib>Clifford, Bryan ; Lo, Wei-Ching ; Polak, Daniel ; Splitthoff, Daniel Nicolas ; Hossbach, Julian ; Cauley, Stephen Farman</creatorcontrib><description>Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.</description><language>eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230418&amp;DB=EPODOC&amp;CC=US&amp;NR=11630177B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230418&amp;DB=EPODOC&amp;CC=US&amp;NR=11630177B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Clifford, Bryan</creatorcontrib><creatorcontrib>Lo, Wei-Ching</creatorcontrib><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Splitthoff, Daniel Nicolas</creatorcontrib><creatorcontrib>Hossbach, Julian</creatorcontrib><creatorcontrib>Cauley, Stephen Farman</creatorcontrib><title>Coil mixing error matrix and deep learning for prospective motion assessment</title><description>Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuFtLES9w3gAwRgwfYJiYafWYUj-yMLu7DKzSI6vggewesX3lu7aJR8o-tnLk6CalCIX9TOxjDQCmQJY5cvTB7MmyxiKf4FiKj4JsRnMIqSs3WLiYNj8unLb8-neXXbIqYdlHiAo_eNWVcd6XzVNe6j_ed7C3zZl</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Clifford, Bryan</creator><creator>Lo, Wei-Ching</creator><creator>Polak, Daniel</creator><creator>Splitthoff, Daniel Nicolas</creator><creator>Hossbach, Julian</creator><creator>Cauley, Stephen Farman</creator><scope>EVB</scope></search><sort><creationdate>20230418</creationdate><title>Coil mixing error matrix and deep learning for prospective motion assessment</title><author>Clifford, Bryan ; Lo, Wei-Ching ; Polak, Daniel ; Splitthoff, Daniel Nicolas ; Hossbach, Julian ; Cauley, Stephen Farman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11630177B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Clifford, Bryan</creatorcontrib><creatorcontrib>Lo, Wei-Ching</creatorcontrib><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Splitthoff, Daniel Nicolas</creatorcontrib><creatorcontrib>Hossbach, Julian</creatorcontrib><creatorcontrib>Cauley, Stephen Farman</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Clifford, Bryan</au><au>Lo, Wei-Ching</au><au>Polak, Daniel</au><au>Splitthoff, Daniel Nicolas</au><au>Hossbach, Julian</au><au>Cauley, Stephen Farman</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Coil mixing error matrix and deep learning for prospective motion assessment</title><date>2023-04-18</date><risdate>2023</risdate><abstract>Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11630177B2
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Coil mixing error matrix and deep learning for prospective motion assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Clifford,%20Bryan&rft.date=2023-04-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11630177B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true