Deep learning for credit controls

Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Geddes, David, Studnitzer, Ari, Singh, Inderdeep
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Geddes, David
Studnitzer, Ari
Singh, Inderdeep
description Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11625569B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11625569B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11625569B23</originalsourceid><addsrcrecordid>eNrjZFB0SU0tUMhJTSzKy8xLV0jLL1JILkpNySxRSM7PKynKzynmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZGpqZmlk5GxsSoAQB6QyXG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning for credit controls</title><source>esp@cenet</source><creator>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</creator><creatorcontrib>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</creatorcontrib><description>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230411&amp;DB=EPODOC&amp;CC=US&amp;NR=11625569B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230411&amp;DB=EPODOC&amp;CC=US&amp;NR=11625569B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Geddes, David</creatorcontrib><creatorcontrib>Studnitzer, Ari</creatorcontrib><creatorcontrib>Singh, Inderdeep</creatorcontrib><title>Deep learning for credit controls</title><description>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB0SU0tUMhJTSzKy8xLV0jLL1JILkpNySxRSM7PKynKzynmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZGpqZmlk5GxsSoAQB6QyXG</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Geddes, David</creator><creator>Studnitzer, Ari</creator><creator>Singh, Inderdeep</creator><scope>EVB</scope></search><sort><creationdate>20230411</creationdate><title>Deep learning for credit controls</title><author>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11625569B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Geddes, David</creatorcontrib><creatorcontrib>Studnitzer, Ari</creatorcontrib><creatorcontrib>Singh, Inderdeep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geddes, David</au><au>Studnitzer, Ari</au><au>Singh, Inderdeep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning for credit controls</title><date>2023-04-11</date><risdate>2023</risdate><abstract>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11625569B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Deep learning for credit controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Geddes,%20David&rft.date=2023-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11625569B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true