Deep learning for credit controls
Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new tran...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Geddes, David Studnitzer, Ari Singh, Inderdeep |
description | Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11625569B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11625569B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11625569B23</originalsourceid><addsrcrecordid>eNrjZFB0SU0tUMhJTSzKy8xLV0jLL1JILkpNySxRSM7PKynKzynmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZGpqZmlk5GxsSoAQB6QyXG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning for credit controls</title><source>esp@cenet</source><creator>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</creator><creatorcontrib>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</creatorcontrib><description>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=US&NR=11625569B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=US&NR=11625569B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Geddes, David</creatorcontrib><creatorcontrib>Studnitzer, Ari</creatorcontrib><creatorcontrib>Singh, Inderdeep</creatorcontrib><title>Deep learning for credit controls</title><description>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB0SU0tUMhJTSzKy8xLV0jLL1JILkpNySxRSM7PKynKzynmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhmZGpqZmlk5GxsSoAQB6QyXG</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Geddes, David</creator><creator>Studnitzer, Ari</creator><creator>Singh, Inderdeep</creator><scope>EVB</scope></search><sort><creationdate>20230411</creationdate><title>Deep learning for credit controls</title><author>Geddes, David ; Studnitzer, Ari ; Singh, Inderdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11625569B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Geddes, David</creatorcontrib><creatorcontrib>Studnitzer, Ari</creatorcontrib><creatorcontrib>Singh, Inderdeep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geddes, David</au><au>Studnitzer, Ari</au><au>Singh, Inderdeep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning for credit controls</title><date>2023-04-11</date><risdate>2023</risdate><abstract>Systems and methods are provided to identify abnormal transaction activity by a participant that is inconsistent with current conditions. Historical participant and external data is identified. A recurrent neural network identifies patterns in the historical participant and external data. A new transaction by the participant is received. The new transaction is compared using the patterns to the historical participant and external data. An abnormality score is generated. An alert is generated if the abnormality score exceeds a threshold.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11625569B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Deep learning for credit controls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Geddes,%20David&rft.date=2023-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11625569B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |