Platform for concurrent execution of GPU operations

Computing resources may be optimally allocated for a multipath neural network using a multipath neural network analyzer that includes an interface and a processing device. The interface receives a multipath neural network. The processing device generates the multipath neural network to include one o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ki, Yang Seok, Pourghassemi Najafabadi, Behnam, Lee, Joo Hwan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ki, Yang Seok
Pourghassemi Najafabadi, Behnam
Lee, Joo Hwan
description Computing resources may be optimally allocated for a multipath neural network using a multipath neural network analyzer that includes an interface and a processing device. The interface receives a multipath neural network. The processing device generates the multipath neural network to include one or more layers of a critical path through the multipath neural network that are allocated a first allocation of computing resources that are available to execute the multipath neural network. The critical path limits throughput of the multipath neural network. The first allocation of computing resources reduces an execution time of the multipath neural network to be less than a baseline execution time of a second allocation of computing resources for the multipath neural network. The first allocation of computing resources for a first layer of the critical path is different than the second allocation of computing resources for the first layer of the critical path.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11620510B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11620510B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11620510B23</originalsourceid><addsrcrecordid>eNrjZDAOyEksScsvylUAEgrJ-XnJpUVFqXklCqkVqcmlJZn5eQr5aQruAaEK-QWpRYkggWIeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoaGZkYGpo4GRkTIwaAA3RLJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Platform for concurrent execution of GPU operations</title><source>esp@cenet</source><creator>Ki, Yang Seok ; Pourghassemi Najafabadi, Behnam ; Lee, Joo Hwan</creator><creatorcontrib>Ki, Yang Seok ; Pourghassemi Najafabadi, Behnam ; Lee, Joo Hwan</creatorcontrib><description>Computing resources may be optimally allocated for a multipath neural network using a multipath neural network analyzer that includes an interface and a processing device. The interface receives a multipath neural network. The processing device generates the multipath neural network to include one or more layers of a critical path through the multipath neural network that are allocated a first allocation of computing resources that are available to execute the multipath neural network. The critical path limits throughput of the multipath neural network. The first allocation of computing resources reduces an execution time of the multipath neural network to be less than a baseline execution time of a second allocation of computing resources for the multipath neural network. The first allocation of computing resources for a first layer of the critical path is different than the second allocation of computing resources for the first layer of the critical path.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=US&amp;NR=11620510B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=US&amp;NR=11620510B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ki, Yang Seok</creatorcontrib><creatorcontrib>Pourghassemi Najafabadi, Behnam</creatorcontrib><creatorcontrib>Lee, Joo Hwan</creatorcontrib><title>Platform for concurrent execution of GPU operations</title><description>Computing resources may be optimally allocated for a multipath neural network using a multipath neural network analyzer that includes an interface and a processing device. The interface receives a multipath neural network. The processing device generates the multipath neural network to include one or more layers of a critical path through the multipath neural network that are allocated a first allocation of computing resources that are available to execute the multipath neural network. The critical path limits throughput of the multipath neural network. The first allocation of computing resources reduces an execution time of the multipath neural network to be less than a baseline execution time of a second allocation of computing resources for the multipath neural network. The first allocation of computing resources for a first layer of the critical path is different than the second allocation of computing resources for the first layer of the critical path.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOyEksScsvylUAEgrJ-XnJpUVFqXklCqkVqcmlJZn5eQr5aQruAaEK-QWpRYkggWIeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhIfGmxoaGZkYGpo4GRkTIwaAA3RLJY</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Ki, Yang Seok</creator><creator>Pourghassemi Najafabadi, Behnam</creator><creator>Lee, Joo Hwan</creator><scope>EVB</scope></search><sort><creationdate>20230404</creationdate><title>Platform for concurrent execution of GPU operations</title><author>Ki, Yang Seok ; Pourghassemi Najafabadi, Behnam ; Lee, Joo Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11620510B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ki, Yang Seok</creatorcontrib><creatorcontrib>Pourghassemi Najafabadi, Behnam</creatorcontrib><creatorcontrib>Lee, Joo Hwan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ki, Yang Seok</au><au>Pourghassemi Najafabadi, Behnam</au><au>Lee, Joo Hwan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Platform for concurrent execution of GPU operations</title><date>2023-04-04</date><risdate>2023</risdate><abstract>Computing resources may be optimally allocated for a multipath neural network using a multipath neural network analyzer that includes an interface and a processing device. The interface receives a multipath neural network. The processing device generates the multipath neural network to include one or more layers of a critical path through the multipath neural network that are allocated a first allocation of computing resources that are available to execute the multipath neural network. The critical path limits throughput of the multipath neural network. The first allocation of computing resources reduces an execution time of the multipath neural network to be less than a baseline execution time of a second allocation of computing resources for the multipath neural network. The first allocation of computing resources for a first layer of the critical path is different than the second allocation of computing resources for the first layer of the critical path.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11620510B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Platform for concurrent execution of GPU operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ki,%20Yang%20Seok&rft.date=2023-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11620510B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true