Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis

Described herein is a system and method for detecting correlated changes (e.g., between code files and configuration files). For a plurality of code files and a plurality of configuration files, a correlated change model is trained to identify correlated changes across the code files and the configu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mehta, Sonu, Bhagwan, Ranjita, Kumar, Aditya, Bansal, Chetan, Bird, Christian Alma, Ashok, Balasubramanyan, Asthana, Sumit, Maddila, Chandra Sekhar, Kumar, Rahul
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mehta, Sonu
Bhagwan, Ranjita
Kumar, Aditya
Bansal, Chetan
Bird, Christian Alma
Ashok, Balasubramanyan
Asthana, Sumit
Maddila, Chandra Sekhar
Kumar, Rahul
description Described herein is a system and method for detecting correlated changes (e.g., between code files and configuration files). For a plurality of code files and a plurality of configuration files, a correlated change model is trained to identify correlated changes across the code files and the configuration files using a machine learning algorithm that discovers change rules using a support parameter, and, a confidence parameter, and, a refinement algorithm that refines the discovered change rules. The correlated change model comprising the change rules is stored. The correlated change model can be used to identify potential issue(s) regarding a particular file (e.g., changed code or configuration file(s)). Information regarding the identified potential issue(s) can be provided to a user.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11599354B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11599354B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11599354B23</originalsourceid><addsrcrecordid>eNqNi7sKwkAQAK-xEPUf1k4LkZikSOsLe7WUsF4258K5F24vgn-vAT_AamCYGZvbnhLZxOLgyWqDtOz6iImDAEqzDhHuvVvoEljAY3QESvHFlgbX6zDaECN5TNSAfaB8ExT0b2WdmlGLXmn248TMj4fL7rSiLtSkHVoSSvX1nGVlVeVlsd3k_zQfzCE8Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis</title><source>esp@cenet</source><creator>Mehta, Sonu ; Bhagwan, Ranjita ; Kumar, Aditya ; Bansal, Chetan ; Bird, Christian Alma ; Ashok, Balasubramanyan ; Asthana, Sumit ; Maddila, Chandra Sekhar ; Kumar, Rahul</creator><creatorcontrib>Mehta, Sonu ; Bhagwan, Ranjita ; Kumar, Aditya ; Bansal, Chetan ; Bird, Christian Alma ; Ashok, Balasubramanyan ; Asthana, Sumit ; Maddila, Chandra Sekhar ; Kumar, Rahul</creatorcontrib><description>Described herein is a system and method for detecting correlated changes (e.g., between code files and configuration files). For a plurality of code files and a plurality of configuration files, a correlated change model is trained to identify correlated changes across the code files and the configuration files using a machine learning algorithm that discovers change rules using a support parameter, and, a confidence parameter, and, a refinement algorithm that refines the discovered change rules. The correlated change model comprising the change rules is stored. The correlated change model can be used to identify potential issue(s) regarding a particular file (e.g., changed code or configuration file(s)). Information regarding the identified potential issue(s) can be provided to a user.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230307&amp;DB=EPODOC&amp;CC=US&amp;NR=11599354B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230307&amp;DB=EPODOC&amp;CC=US&amp;NR=11599354B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehta, Sonu</creatorcontrib><creatorcontrib>Bhagwan, Ranjita</creatorcontrib><creatorcontrib>Kumar, Aditya</creatorcontrib><creatorcontrib>Bansal, Chetan</creatorcontrib><creatorcontrib>Bird, Christian Alma</creatorcontrib><creatorcontrib>Ashok, Balasubramanyan</creatorcontrib><creatorcontrib>Asthana, Sumit</creatorcontrib><creatorcontrib>Maddila, Chandra Sekhar</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><title>Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis</title><description>Described herein is a system and method for detecting correlated changes (e.g., between code files and configuration files). For a plurality of code files and a plurality of configuration files, a correlated change model is trained to identify correlated changes across the code files and the configuration files using a machine learning algorithm that discovers change rules using a support parameter, and, a confidence parameter, and, a refinement algorithm that refines the discovered change rules. The correlated change model comprising the change rules is stored. The correlated change model can be used to identify potential issue(s) regarding a particular file (e.g., changed code or configuration file(s)). Information regarding the identified potential issue(s) can be provided to a user.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKwkAQAK-xEPUf1k4LkZikSOsLe7WUsF4258K5F24vgn-vAT_AamCYGZvbnhLZxOLgyWqDtOz6iImDAEqzDhHuvVvoEljAY3QESvHFlgbX6zDaECN5TNSAfaB8ExT0b2WdmlGLXmn248TMj4fL7rSiLtSkHVoSSvX1nGVlVeVlsd3k_zQfzCE8Cw</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Mehta, Sonu</creator><creator>Bhagwan, Ranjita</creator><creator>Kumar, Aditya</creator><creator>Bansal, Chetan</creator><creator>Bird, Christian Alma</creator><creator>Ashok, Balasubramanyan</creator><creator>Asthana, Sumit</creator><creator>Maddila, Chandra Sekhar</creator><creator>Kumar, Rahul</creator><scope>EVB</scope></search><sort><creationdate>20230307</creationdate><title>Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis</title><author>Mehta, Sonu ; Bhagwan, Ranjita ; Kumar, Aditya ; Bansal, Chetan ; Bird, Christian Alma ; Ashok, Balasubramanyan ; Asthana, Sumit ; Maddila, Chandra Sekhar ; Kumar, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11599354B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Sonu</creatorcontrib><creatorcontrib>Bhagwan, Ranjita</creatorcontrib><creatorcontrib>Kumar, Aditya</creatorcontrib><creatorcontrib>Bansal, Chetan</creatorcontrib><creatorcontrib>Bird, Christian Alma</creatorcontrib><creatorcontrib>Ashok, Balasubramanyan</creatorcontrib><creatorcontrib>Asthana, Sumit</creatorcontrib><creatorcontrib>Maddila, Chandra Sekhar</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehta, Sonu</au><au>Bhagwan, Ranjita</au><au>Kumar, Aditya</au><au>Bansal, Chetan</au><au>Bird, Christian Alma</au><au>Ashok, Balasubramanyan</au><au>Asthana, Sumit</au><au>Maddila, Chandra Sekhar</au><au>Kumar, Rahul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis</title><date>2023-03-07</date><risdate>2023</risdate><abstract>Described herein is a system and method for detecting correlated changes (e.g., between code files and configuration files). For a plurality of code files and a plurality of configuration files, a correlated change model is trained to identify correlated changes across the code files and the configuration files using a machine learning algorithm that discovers change rules using a support parameter, and, a confidence parameter, and, a refinement algorithm that refines the discovered change rules. The correlated change model comprising the change rules is stored. The correlated change model can be used to identify potential issue(s) regarding a particular file (e.g., changed code or configuration file(s)). Information regarding the identified potential issue(s) can be provided to a user.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11599354B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Detecting misconfiguration and/or bug(s) in large service(s) using correlated change analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mehta,%20Sonu&rft.date=2023-03-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11599354B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true