Near-memory acceleration for database operations

Despite the increase of memory capacity and CPU computing power, memory performance remains the bottleneck of in-memory database management systems due to ever-increasing data volumes and application demands. Because the scale of data workloads has out-paced traditional CPU caches and memory bandwid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choi, Kang Woo, Lee, Dong Hun, Rebholz, Oliver, Kim, Jungmin, Ahn, Minseon
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Choi, Kang Woo
Lee, Dong Hun
Rebholz, Oliver
Kim, Jungmin
Ahn, Minseon
description Despite the increase of memory capacity and CPU computing power, memory performance remains the bottleneck of in-memory database management systems due to ever-increasing data volumes and application demands. Because the scale of data workloads has out-paced traditional CPU caches and memory bandwidth, one can improve data movement from memory to computing units to improve performance in in-memory database scenarios. A near-memory database accelerator framework offloads data-intensive database operations via or to a near-memory computation engine. The database accelerator's system architecture can include a database accelerator software module/driver and a memory module with a database accelerator engine. An application programming interface (API) can be provided to support database accelerator functionality. Memory of the database accelerator can be directly accessible by the CPU.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11586630B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11586630B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11586630B23</originalsourceid><addsrcrecordid>eNrjZDDwS00s0s1Nzc0vqlRITE5OzUktSizJzM9TSMsvUkhJLElMSixOVcgvgAoX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NTCzMzYwMnI2Ni1AAAfksrvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Near-memory acceleration for database operations</title><source>esp@cenet</source><creator>Choi, Kang Woo ; Lee, Dong Hun ; Rebholz, Oliver ; Kim, Jungmin ; Ahn, Minseon</creator><creatorcontrib>Choi, Kang Woo ; Lee, Dong Hun ; Rebholz, Oliver ; Kim, Jungmin ; Ahn, Minseon</creatorcontrib><description>Despite the increase of memory capacity and CPU computing power, memory performance remains the bottleneck of in-memory database management systems due to ever-increasing data volumes and application demands. Because the scale of data workloads has out-paced traditional CPU caches and memory bandwidth, one can improve data movement from memory to computing units to improve performance in in-memory database scenarios. A near-memory database accelerator framework offloads data-intensive database operations via or to a near-memory computation engine. The database accelerator's system architecture can include a database accelerator software module/driver and a memory module with a database accelerator engine. An application programming interface (API) can be provided to support database accelerator functionality. Memory of the database accelerator can be directly accessible by the CPU.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230221&amp;DB=EPODOC&amp;CC=US&amp;NR=11586630B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230221&amp;DB=EPODOC&amp;CC=US&amp;NR=11586630B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Choi, Kang Woo</creatorcontrib><creatorcontrib>Lee, Dong Hun</creatorcontrib><creatorcontrib>Rebholz, Oliver</creatorcontrib><creatorcontrib>Kim, Jungmin</creatorcontrib><creatorcontrib>Ahn, Minseon</creatorcontrib><title>Near-memory acceleration for database operations</title><description>Despite the increase of memory capacity and CPU computing power, memory performance remains the bottleneck of in-memory database management systems due to ever-increasing data volumes and application demands. Because the scale of data workloads has out-paced traditional CPU caches and memory bandwidth, one can improve data movement from memory to computing units to improve performance in in-memory database scenarios. A near-memory database accelerator framework offloads data-intensive database operations via or to a near-memory computation engine. The database accelerator's system architecture can include a database accelerator software module/driver and a memory module with a database accelerator engine. An application programming interface (API) can be provided to support database accelerator functionality. Memory of the database accelerator can be directly accessible by the CPU.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDwS00s0s1Nzc0vqlRITE5OzUktSizJzM9TSMsvUkhJLElMSixOVcgvgAoX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NTCzMzYwMnI2Ni1AAAfksrvQ</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Choi, Kang Woo</creator><creator>Lee, Dong Hun</creator><creator>Rebholz, Oliver</creator><creator>Kim, Jungmin</creator><creator>Ahn, Minseon</creator><scope>EVB</scope></search><sort><creationdate>20230221</creationdate><title>Near-memory acceleration for database operations</title><author>Choi, Kang Woo ; Lee, Dong Hun ; Rebholz, Oliver ; Kim, Jungmin ; Ahn, Minseon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11586630B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Kang Woo</creatorcontrib><creatorcontrib>Lee, Dong Hun</creatorcontrib><creatorcontrib>Rebholz, Oliver</creatorcontrib><creatorcontrib>Kim, Jungmin</creatorcontrib><creatorcontrib>Ahn, Minseon</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, Kang Woo</au><au>Lee, Dong Hun</au><au>Rebholz, Oliver</au><au>Kim, Jungmin</au><au>Ahn, Minseon</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Near-memory acceleration for database operations</title><date>2023-02-21</date><risdate>2023</risdate><abstract>Despite the increase of memory capacity and CPU computing power, memory performance remains the bottleneck of in-memory database management systems due to ever-increasing data volumes and application demands. Because the scale of data workloads has out-paced traditional CPU caches and memory bandwidth, one can improve data movement from memory to computing units to improve performance in in-memory database scenarios. A near-memory database accelerator framework offloads data-intensive database operations via or to a near-memory computation engine. The database accelerator's system architecture can include a database accelerator software module/driver and a memory module with a database accelerator engine. An application programming interface (API) can be provided to support database accelerator functionality. Memory of the database accelerator can be directly accessible by the CPU.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11586630B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Near-memory acceleration for database operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Choi,%20Kang%20Woo&rft.date=2023-02-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11586630B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true