Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states

An example system includes a processor to receive a source code sample to be classified. The processor can execute a hybrid code analysis to generate an internal analysis state. The processor can extract features from the internal analysis state via a trained machine learning model modified using tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Copty, Fady, Doron, Shai, Igbaria, Reda
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Copty, Fady
Doron, Shai
Igbaria, Reda
description An example system includes a processor to receive a source code sample to be classified. The processor can execute a hybrid code analysis to generate an internal analysis state. The processor can extract features from the internal analysis state via a trained machine learning model modified using transfer learning. The processor can generate a label based on the extracted features via a machine learning classifier model trained on internal analysis states of hybrid code analyses.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11573785B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11573785B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11573785B23</originalsourceid><addsrcrecordid>eNqNy0EKwlAMBNBuXIh6h3gAF7WUulYUl4K6LvE31UCalp9U8PZ-xQO4mVnMm2kmp0gNB2e9Q-gbgucoShFvLOxMBqN9pg7Dg5VACKN-raAZt0wRunQTA4-YRAO9AqtTVBTAFC9jA3N0snk2aVGMFr-eZcvD_rI7rmjoa7IBAyl5fT3neVkV1abcrot_zBu_d0MU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states</title><source>esp@cenet</source><creator>Copty, Fady ; Doron, Shai ; Igbaria, Reda</creator><creatorcontrib>Copty, Fady ; Doron, Shai ; Igbaria, Reda</creatorcontrib><description>An example system includes a processor to receive a source code sample to be classified. The processor can execute a hybrid code analysis to generate an internal analysis state. The processor can extract features from the internal analysis state via a trained machine learning model modified using transfer learning. The processor can generate a label based on the extracted features via a machine learning classifier model trained on internal analysis states of hybrid code analyses.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230207&amp;DB=EPODOC&amp;CC=US&amp;NR=11573785B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230207&amp;DB=EPODOC&amp;CC=US&amp;NR=11573785B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Copty, Fady</creatorcontrib><creatorcontrib>Doron, Shai</creatorcontrib><creatorcontrib>Igbaria, Reda</creatorcontrib><title>Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states</title><description>An example system includes a processor to receive a source code sample to be classified. The processor can execute a hybrid code analysis to generate an internal analysis state. The processor can extract features from the internal analysis state via a trained machine learning model modified using transfer learning. The processor can generate a label based on the extracted features via a machine learning classifier model trained on internal analysis states of hybrid code analyses.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwlAMBNBuXIh6h3gAF7WUulYUl4K6LvE31UCalp9U8PZ-xQO4mVnMm2kmp0gNB2e9Q-gbgucoShFvLOxMBqN9pg7Dg5VACKN-raAZt0wRunQTA4-YRAO9AqtTVBTAFC9jA3N0snk2aVGMFr-eZcvD_rI7rmjoa7IBAyl5fT3neVkV1abcrot_zBu_d0MU</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Copty, Fady</creator><creator>Doron, Shai</creator><creator>Igbaria, Reda</creator><scope>EVB</scope></search><sort><creationdate>20230207</creationdate><title>Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states</title><author>Copty, Fady ; Doron, Shai ; Igbaria, Reda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11573785B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Copty, Fady</creatorcontrib><creatorcontrib>Doron, Shai</creatorcontrib><creatorcontrib>Igbaria, Reda</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Copty, Fady</au><au>Doron, Shai</au><au>Igbaria, Reda</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states</title><date>2023-02-07</date><risdate>2023</risdate><abstract>An example system includes a processor to receive a source code sample to be classified. The processor can execute a hybrid code analysis to generate an internal analysis state. The processor can extract features from the internal analysis state via a trained machine learning model modified using transfer learning. The processor can generate a label based on the extracted features via a machine learning classifier model trained on internal analysis states of hybrid code analyses.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11573785B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Predicting code vulnerabilities using machine learning classifier models trained on internal analysis states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Copty,%20Fady&rft.date=2023-02-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11573785B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true