Private model utility by minimizing expected loss under noise

Training of a model is performed to minimize expected loss under noise (ELUN) while maintaining differential privacy. Noise is added to weights of a machine learning model as random samples drawn from a noise distribution, the noise being added in accordance with a privacy budget. The ELUN is minimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leino, Klas, Guajardo Merchan, Jorge
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!