Deep learning models for speech recognition

Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diamos, Gregory, Ng, Andrew, Prenger, Ryan, Hannun, Awni, Catanzaro, Bryan, Case, Carl, Satheesh, Sanjeev, Sengupta, Shubhabrata, Coates, Adam, Casper, Jared, Eisen, Erich
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. Neither a phoneme dictionary, nor even the concept of a "phoneme," is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained. Embodiments of the system can also handle challenging noisy environments better than widely used, state-of-the-art commercial speech systems.