System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd

Aspects of the subject disclosure may include, for example, receiving a plurality of proposed machine learning solutions to a machine learning problem including receiving, for each respective proposed machine learning solution of the plurality of proposed machine learning solutions, one or more of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Savage, Lauren, Austin, Mark, Dabholkar, Abhay, Nagarajan, Vijayan, Whitney, Joshua
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Savage, Lauren
Austin, Mark
Dabholkar, Abhay
Nagarajan, Vijayan
Whitney, Joshua
description Aspects of the subject disclosure may include, for example, receiving a plurality of proposed machine learning solutions to a machine learning problem including receiving, for each respective proposed machine learning solution of the plurality of proposed machine learning solutions, one or more of a machine learning model, a dataset and a data pipeline output; automatically determining hybrid solutions to the machine learning problem, including combining, by the processing system, at least one of a first component from a first proposed machine learning solution with at least one of a second component from a second proposed machine learning solution; and ranking the hybrid solutions including determining a log loss score for each hybrid solution and sorting the hybrid solutions according to the log loss score for each hybrid solution. Other embodiments are disclosed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11556737B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11556737B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11556737B23</originalsourceid><addsrcrecordid>eNqNi7EOgjAQQFkcjPoP544DEmRWo9EZncnZXqVJr9eUouHvxcQPcHlveW-eqWbsE3EOTKkTnQN6DcFhMhIZJgAOSYBRddYTOMLorX_CyyJISJbRQTc-otWwv357HqbZigcThUFFeetlNjPoelr9vMjW59PteNlQkJb6gIo8pfbeFEVV7eqyPmzLf5oPSVA-JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd</title><source>esp@cenet</source><creator>Savage, Lauren ; Austin, Mark ; Dabholkar, Abhay ; Nagarajan, Vijayan ; Whitney, Joshua</creator><creatorcontrib>Savage, Lauren ; Austin, Mark ; Dabholkar, Abhay ; Nagarajan, Vijayan ; Whitney, Joshua</creatorcontrib><description>Aspects of the subject disclosure may include, for example, receiving a plurality of proposed machine learning solutions to a machine learning problem including receiving, for each respective proposed machine learning solution of the plurality of proposed machine learning solutions, one or more of a machine learning model, a dataset and a data pipeline output; automatically determining hybrid solutions to the machine learning problem, including combining, by the processing system, at least one of a first component from a first proposed machine learning solution with at least one of a second component from a second proposed machine learning solution; and ranking the hybrid solutions including determining a log loss score for each hybrid solution and sorting the hybrid solutions according to the log loss score for each hybrid solution. Other embodiments are disclosed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230117&amp;DB=EPODOC&amp;CC=US&amp;NR=11556737B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230117&amp;DB=EPODOC&amp;CC=US&amp;NR=11556737B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Savage, Lauren</creatorcontrib><creatorcontrib>Austin, Mark</creatorcontrib><creatorcontrib>Dabholkar, Abhay</creatorcontrib><creatorcontrib>Nagarajan, Vijayan</creatorcontrib><creatorcontrib>Whitney, Joshua</creatorcontrib><title>System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd</title><description>Aspects of the subject disclosure may include, for example, receiving a plurality of proposed machine learning solutions to a machine learning problem including receiving, for each respective proposed machine learning solution of the plurality of proposed machine learning solutions, one or more of a machine learning model, a dataset and a data pipeline output; automatically determining hybrid solutions to the machine learning problem, including combining, by the processing system, at least one of a first component from a first proposed machine learning solution with at least one of a second component from a second proposed machine learning solution; and ranking the hybrid solutions including determining a log loss score for each hybrid solution and sorting the hybrid solutions according to the log loss score for each hybrid solution. Other embodiments are disclosed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EOgjAQQFkcjPoP544DEmRWo9EZncnZXqVJr9eUouHvxcQPcHlveW-eqWbsE3EOTKkTnQN6DcFhMhIZJgAOSYBRddYTOMLorX_CyyJISJbRQTc-otWwv357HqbZigcThUFFeetlNjPoelr9vMjW59PteNlQkJb6gIo8pfbeFEVV7eqyPmzLf5oPSVA-JA</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Savage, Lauren</creator><creator>Austin, Mark</creator><creator>Dabholkar, Abhay</creator><creator>Nagarajan, Vijayan</creator><creator>Whitney, Joshua</creator><scope>EVB</scope></search><sort><creationdate>20230117</creationdate><title>System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd</title><author>Savage, Lauren ; Austin, Mark ; Dabholkar, Abhay ; Nagarajan, Vijayan ; Whitney, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11556737B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Savage, Lauren</creatorcontrib><creatorcontrib>Austin, Mark</creatorcontrib><creatorcontrib>Dabholkar, Abhay</creatorcontrib><creatorcontrib>Nagarajan, Vijayan</creatorcontrib><creatorcontrib>Whitney, Joshua</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savage, Lauren</au><au>Austin, Mark</au><au>Dabholkar, Abhay</au><au>Nagarajan, Vijayan</au><au>Whitney, Joshua</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd</title><date>2023-01-17</date><risdate>2023</risdate><abstract>Aspects of the subject disclosure may include, for example, receiving a plurality of proposed machine learning solutions to a machine learning problem including receiving, for each respective proposed machine learning solution of the plurality of proposed machine learning solutions, one or more of a machine learning model, a dataset and a data pipeline output; automatically determining hybrid solutions to the machine learning problem, including combining, by the processing system, at least one of a first component from a first proposed machine learning solution with at least one of a second component from a second proposed machine learning solution; and ranking the hybrid solutions including determining a log loss score for each hybrid solution and sorting the hybrid solutions according to the log loss score for each hybrid solution. Other embodiments are disclosed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11556737B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Savage,%20Lauren&rft.date=2023-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11556737B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true