Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance

The disclosed embodiments relate to a system that automatically selects a prognostic-surveillance technique to analyze a set of time-series signals. During operation, the system receives the set of time-series signals obtained from sensors in a monitored system. Next, the system determines whether t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Guang C, Chotrani, Aakash K, Gerdes, Matthew T, Wood, Alan P, Gross, Kenny C, Guo, Beiwen
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wang, Guang C
Chotrani, Aakash K
Gerdes, Matthew T
Wood, Alan P
Gross, Kenny C
Guo, Beiwen
description The disclosed embodiments relate to a system that automatically selects a prognostic-surveillance technique to analyze a set of time-series signals. During operation, the system receives the set of time-series signals obtained from sensors in a monitored system. Next, the system determines whether the set of time-series signals is univariate or multivariate. When the set of time-series signals is multivariate, the system determines if there exist cross-correlations among signals in the set of time-series signals. If so, the system performs subsequent prognostic-surveillance operations by analyzing the cross-correlations. Otherwise, if the set of time-series signals is univariate, the system performs subsequent prognostic-surveillance operations by analyzing serial correlations for the univariate time-series signal.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11556555B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11556555B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11556555B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAP5gEpAjI9QSAKqIA6OpxNZOH4Tj4Hvo8i8QCqKWY088Lvx8wDZe9MS5lKdQmIPvamSzTgw-llKLZGEiSxg-rkxAuCjzCZjY4inLK5XsonKaaU-8g6LXVMb_gQKDosi1lHQbH6cVGsT8f74VxCuIEKOUTk5nGrKmt31tp6s_2n-QLVm0Hn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance</title><source>esp@cenet</source><creator>Wang, Guang C ; Chotrani, Aakash K ; Gerdes, Matthew T ; Wood, Alan P ; Gross, Kenny C ; Guo, Beiwen</creator><creatorcontrib>Wang, Guang C ; Chotrani, Aakash K ; Gerdes, Matthew T ; Wood, Alan P ; Gross, Kenny C ; Guo, Beiwen</creatorcontrib><description>The disclosed embodiments relate to a system that automatically selects a prognostic-surveillance technique to analyze a set of time-series signals. During operation, the system receives the set of time-series signals obtained from sensors in a monitored system. Next, the system determines whether the set of time-series signals is univariate or multivariate. When the set of time-series signals is multivariate, the system determines if there exist cross-correlations among signals in the set of time-series signals. If so, the system performs subsequent prognostic-surveillance operations by analyzing the cross-correlations. Otherwise, if the set of time-series signals is univariate, the system performs subsequent prognostic-surveillance operations by analyzing serial correlations for the univariate time-series signal.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230117&amp;DB=EPODOC&amp;CC=US&amp;NR=11556555B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230117&amp;DB=EPODOC&amp;CC=US&amp;NR=11556555B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wang, Guang C</creatorcontrib><creatorcontrib>Chotrani, Aakash K</creatorcontrib><creatorcontrib>Gerdes, Matthew T</creatorcontrib><creatorcontrib>Wood, Alan P</creatorcontrib><creatorcontrib>Gross, Kenny C</creatorcontrib><creatorcontrib>Guo, Beiwen</creatorcontrib><title>Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance</title><description>The disclosed embodiments relate to a system that automatically selects a prognostic-surveillance technique to analyze a set of time-series signals. During operation, the system receives the set of time-series signals obtained from sensors in a monitored system. Next, the system determines whether the set of time-series signals is univariate or multivariate. When the set of time-series signals is multivariate, the system determines if there exist cross-correlations among signals in the set of time-series signals. If so, the system performs subsequent prognostic-surveillance operations by analyzing the cross-correlations. Otherwise, if the set of time-series signals is univariate, the system performs subsequent prognostic-surveillance operations by analyzing serial correlations for the univariate time-series signal.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAP5gEpAjI9QSAKqIA6OpxNZOH4Tj4Hvo8i8QCqKWY088Lvx8wDZe9MS5lKdQmIPvamSzTgw-llKLZGEiSxg-rkxAuCjzCZjY4inLK5XsonKaaU-8g6LXVMb_gQKDosi1lHQbH6cVGsT8f74VxCuIEKOUTk5nGrKmt31tp6s_2n-QLVm0Hn</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Wang, Guang C</creator><creator>Chotrani, Aakash K</creator><creator>Gerdes, Matthew T</creator><creator>Wood, Alan P</creator><creator>Gross, Kenny C</creator><creator>Guo, Beiwen</creator><scope>EVB</scope></search><sort><creationdate>20230117</creationdate><title>Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance</title><author>Wang, Guang C ; Chotrani, Aakash K ; Gerdes, Matthew T ; Wood, Alan P ; Gross, Kenny C ; Guo, Beiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11556555B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guang C</creatorcontrib><creatorcontrib>Chotrani, Aakash K</creatorcontrib><creatorcontrib>Gerdes, Matthew T</creatorcontrib><creatorcontrib>Wood, Alan P</creatorcontrib><creatorcontrib>Gross, Kenny C</creatorcontrib><creatorcontrib>Guo, Beiwen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Guang C</au><au>Chotrani, Aakash K</au><au>Gerdes, Matthew T</au><au>Wood, Alan P</au><au>Gross, Kenny C</au><au>Guo, Beiwen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance</title><date>2023-01-17</date><risdate>2023</risdate><abstract>The disclosed embodiments relate to a system that automatically selects a prognostic-surveillance technique to analyze a set of time-series signals. During operation, the system receives the set of time-series signals obtained from sensors in a monitored system. Next, the system determines whether the set of time-series signals is univariate or multivariate. When the set of time-series signals is multivariate, the system determines if there exist cross-correlations among signals in the set of time-series signals. If so, the system performs subsequent prognostic-surveillance operations by analyzing the cross-correlations. Otherwise, if the set of time-series signals is univariate, the system performs subsequent prognostic-surveillance operations by analyzing serial correlations for the univariate time-series signal.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11556555B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automatic data-screening framework and preprocessing pipeline to support ML-based prognostic surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wang,%20Guang%20C&rft.date=2023-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11556555B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true