Data quality using artificial intelligence

Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yedla, Lahari, Srinivasulu, Midda Dharmika, Sharma, Srinidhi Ramamurthy, Shukla, Divyaksh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yedla, Lahari
Srinivasulu, Midda Dharmika
Sharma, Srinidhi Ramamurthy
Shukla, Divyaksh
description Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11550766B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11550766B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11550766B23</originalsourceid><addsrcrecordid>eNrjZNBySSxJVCgsTczJLKlUKC3OzEtXSCwqyUzLTM5MzFHIzCtJzcnJTE_NS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhqamBuZmZk5GxsSoAQBMaCl3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data quality using artificial intelligence</title><source>esp@cenet</source><creator>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</creator><creatorcontrib>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</creatorcontrib><description>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=US&amp;NR=11550766B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=US&amp;NR=11550766B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yedla, Lahari</creatorcontrib><creatorcontrib>Srinivasulu, Midda Dharmika</creatorcontrib><creatorcontrib>Sharma, Srinidhi Ramamurthy</creatorcontrib><creatorcontrib>Shukla, Divyaksh</creatorcontrib><title>Data quality using artificial intelligence</title><description>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBySSxJVCgsTczJLKlUKC3OzEtXSCwqyUzLTM5MzFHIzCtJzcnJTE_NS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhqamBuZmZk5GxsSoAQBMaCl3</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Yedla, Lahari</creator><creator>Srinivasulu, Midda Dharmika</creator><creator>Sharma, Srinidhi Ramamurthy</creator><creator>Shukla, Divyaksh</creator><scope>EVB</scope></search><sort><creationdate>20230110</creationdate><title>Data quality using artificial intelligence</title><author>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11550766B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yedla, Lahari</creatorcontrib><creatorcontrib>Srinivasulu, Midda Dharmika</creatorcontrib><creatorcontrib>Sharma, Srinidhi Ramamurthy</creatorcontrib><creatorcontrib>Shukla, Divyaksh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yedla, Lahari</au><au>Srinivasulu, Midda Dharmika</au><au>Sharma, Srinidhi Ramamurthy</au><au>Shukla, Divyaksh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data quality using artificial intelligence</title><date>2023-01-10</date><risdate>2023</risdate><abstract>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11550766B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Data quality using artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yedla,%20Lahari&rft.date=2023-01-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11550766B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true