Data quality using artificial intelligence
Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data inclu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yedla, Lahari Srinivasulu, Midda Dharmika Sharma, Srinidhi Ramamurthy Shukla, Divyaksh |
description | Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11550766B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11550766B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11550766B23</originalsourceid><addsrcrecordid>eNrjZNBySSxJVCgsTczJLKlUKC3OzEtXSCwqyUzLTM5MzFHIzCtJzcnJTE_NS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhqamBuZmZk5GxsSoAQBMaCl3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data quality using artificial intelligence</title><source>esp@cenet</source><creator>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</creator><creatorcontrib>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</creatorcontrib><description>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230110&DB=EPODOC&CC=US&NR=11550766B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230110&DB=EPODOC&CC=US&NR=11550766B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yedla, Lahari</creatorcontrib><creatorcontrib>Srinivasulu, Midda Dharmika</creatorcontrib><creatorcontrib>Sharma, Srinidhi Ramamurthy</creatorcontrib><creatorcontrib>Shukla, Divyaksh</creatorcontrib><title>Data quality using artificial intelligence</title><description>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBySSxJVCgsTczJLKlUKC3OzEtXSCwqyUzLTM5MzFHIzCtJzcnJTE_NS07lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhqamBuZmZk5GxsSoAQBMaCl3</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Yedla, Lahari</creator><creator>Srinivasulu, Midda Dharmika</creator><creator>Sharma, Srinidhi Ramamurthy</creator><creator>Shukla, Divyaksh</creator><scope>EVB</scope></search><sort><creationdate>20230110</creationdate><title>Data quality using artificial intelligence</title><author>Yedla, Lahari ; Srinivasulu, Midda Dharmika ; Sharma, Srinidhi Ramamurthy ; Shukla, Divyaksh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11550766B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yedla, Lahari</creatorcontrib><creatorcontrib>Srinivasulu, Midda Dharmika</creatorcontrib><creatorcontrib>Sharma, Srinidhi Ramamurthy</creatorcontrib><creatorcontrib>Shukla, Divyaksh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yedla, Lahari</au><au>Srinivasulu, Midda Dharmika</au><au>Sharma, Srinidhi Ramamurthy</au><au>Shukla, Divyaksh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data quality using artificial intelligence</title><date>2023-01-10</date><risdate>2023</risdate><abstract>Embodiments improve data quality using artificial intelligence. Incoming data that includes a plurality of rows of data and a trained neural network that is configured to predict a data category for the incoming data can be received, where the neural network has been trained with training data including training features, and the training data includes labeled data categories. The incoming data can be processed, where the processing extracts features about the plurality of rows of data to generate metadata profiles that represent the incoming data. Using the trained neural network, a data category for the incoming data can be predicted, where the prediction is based on the generated metadata profiles.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11550766B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Data quality using artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yedla,%20Lahari&rft.date=2023-01-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11550766B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |