Using delayed autocorrelation to improve the predictive scaling of computing resources

Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lewis, Christopher Thomas, Tang, Kai Fan, Wong, Manwah
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lewis, Christopher Thomas
Tang, Kai Fan
Wong, Manwah
description Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11550635B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11550635B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11550635B13</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFsXIh6h_EAgqXEAyiKe63bEpKpBtJMmJkI3t4WPICrxwfvX5pHJzE_IWByHwzgqpIn5okaKYMSxLEwvRH0hVAYQ_QaJ4p3aS5pAE9jqTqDUaiyR1mbxeCS4Oa3K7O9nO-n6w4L9SjFecyofXdrGmv3h9Yem_afzxeRfDqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><source>esp@cenet</source><creator>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</creator><creatorcontrib>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</creatorcontrib><description>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=US&amp;NR=11550635B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=US&amp;NR=11550635B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lewis, Christopher Thomas</creatorcontrib><creatorcontrib>Tang, Kai Fan</creatorcontrib><creatorcontrib>Wong, Manwah</creatorcontrib><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><description>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFsXIh6h_EAgqXEAyiKe63bEpKpBtJMmJkI3t4WPICrxwfvX5pHJzE_IWByHwzgqpIn5okaKYMSxLEwvRH0hVAYQ_QaJ4p3aS5pAE9jqTqDUaiyR1mbxeCS4Oa3K7O9nO-n6w4L9SjFecyofXdrGmv3h9Yem_afzxeRfDqY</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Lewis, Christopher Thomas</creator><creator>Tang, Kai Fan</creator><creator>Wong, Manwah</creator><scope>EVB</scope></search><sort><creationdate>20230110</creationdate><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><author>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11550635B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Christopher Thomas</creatorcontrib><creatorcontrib>Tang, Kai Fan</creatorcontrib><creatorcontrib>Wong, Manwah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lewis, Christopher Thomas</au><au>Tang, Kai Fan</au><au>Wong, Manwah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><date>2023-01-10</date><risdate>2023</risdate><abstract>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11550635B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Using delayed autocorrelation to improve the predictive scaling of computing resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lewis,%20Christopher%20Thomas&rft.date=2023-01-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11550635B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true