Using delayed autocorrelation to improve the predictive scaling of computing resources
Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lewis, Christopher Thomas Tang, Kai Fan Wong, Manwah |
description | Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11550635B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11550635B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11550635B13</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFsXIh6h_EAgqXEAyiKe63bEpKpBtJMmJkI3t4WPICrxwfvX5pHJzE_IWByHwzgqpIn5okaKYMSxLEwvRH0hVAYQ_QaJ4p3aS5pAE9jqTqDUaiyR1mbxeCS4Oa3K7O9nO-n6w4L9SjFecyofXdrGmv3h9Yem_afzxeRfDqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><source>esp@cenet</source><creator>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</creator><creatorcontrib>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</creatorcontrib><description>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230110&DB=EPODOC&CC=US&NR=11550635B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230110&DB=EPODOC&CC=US&NR=11550635B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lewis, Christopher Thomas</creatorcontrib><creatorcontrib>Tang, Kai Fan</creatorcontrib><creatorcontrib>Wong, Manwah</creatorcontrib><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><description>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFsXIh6h_EAgqXEAyiKe63bEpKpBtJMmJkI3t4WPICrxwfvX5pHJzE_IWByHwzgqpIn5okaKYMSxLEwvRH0hVAYQ_QaJ4p3aS5pAE9jqTqDUaiyR1mbxeCS4Oa3K7O9nO-n6w4L9SjFecyofXdrGmv3h9Yem_afzxeRfDqY</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Lewis, Christopher Thomas</creator><creator>Tang, Kai Fan</creator><creator>Wong, Manwah</creator><scope>EVB</scope></search><sort><creationdate>20230110</creationdate><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><author>Lewis, Christopher Thomas ; Tang, Kai Fan ; Wong, Manwah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11550635B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Christopher Thomas</creatorcontrib><creatorcontrib>Tang, Kai Fan</creatorcontrib><creatorcontrib>Wong, Manwah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lewis, Christopher Thomas</au><au>Tang, Kai Fan</au><au>Wong, Manwah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using delayed autocorrelation to improve the predictive scaling of computing resources</title><date>2023-01-10</date><risdate>2023</risdate><abstract>Techniques are described for filtering and normalizing training data used to build a predictive auto scaling model used by a service provider network to proactively scale users' computing resources. Further described are techniques for identifying collections of computing resources that exhibit suitably predictable usage patterns such that a predictive auto scaling model can be used to forecast future usage patterns with reasonable accuracy and to scale the resources based on such generated forecasts. The filtering of training data and the identification of suitably predictable collections of computing resources are based in part on autocorrelation analyses, and in particular on "delayed" autocorrelation analyses, of time series data, among other techniques described herein.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11550635B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Using delayed autocorrelation to improve the predictive scaling of computing resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lewis,%20Christopher%20Thomas&rft.date=2023-01-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11550635B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |