Detecting connectivity disruptions by observing traffic flow patterns

Network connectivity disruptions impacting users of a network, can be detected based on patterns in user network traffic and network topology data, e.g., by a monitoring server computer. Logged network traffic data can be filtered to identify anomalous data flows. The anomalous data flows can be dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Malov, Stanislav Vladimirovich, McCabe, Arran, Pavlakis, Nikolaos, Goychev, Ivan Emilov, O'Leary, Alan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Malov, Stanislav Vladimirovich
McCabe, Arran
Pavlakis, Nikolaos
Goychev, Ivan Emilov
O'Leary, Alan
description Network connectivity disruptions impacting users of a network, can be detected based on patterns in user network traffic and network topology data, e.g., by a monitoring server computer. Logged network traffic data can be filtered to identify anomalous data flows. The anomalous data flows can be data flows indicating connection timeouts such as failed Secure Sockets Layer/Transport Layer Security (SSL/TLS) handshakes. Sources and destinations of the anomalous data flows can be mapped to corresponding physical locations using the network topology data, and the anomalous data flows can be grouped by source and destination, in order to determine an impact or scope of a network connectivity disruption. Users of the network can be notified regarding the network connectivity disruption, and optionally, actions can be taken to reduce the impact of the network connectivity disruption.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11539728B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11539728B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11539728B13</originalsourceid><addsrcrecordid>eNrjZHB1SS1JTS7JzEtXSM7PywMxyzJLKhVSMouLSgtKMvPzihWSKhXyk4pTi8pAqkqKEtPSMpMV0nLyyxUKEktKUovyinkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhqbGluZGFk6ExMWoAeoo0cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detecting connectivity disruptions by observing traffic flow patterns</title><source>esp@cenet</source><creator>Malov, Stanislav Vladimirovich ; McCabe, Arran ; Pavlakis, Nikolaos ; Goychev, Ivan Emilov ; O'Leary, Alan</creator><creatorcontrib>Malov, Stanislav Vladimirovich ; McCabe, Arran ; Pavlakis, Nikolaos ; Goychev, Ivan Emilov ; O'Leary, Alan</creatorcontrib><description>Network connectivity disruptions impacting users of a network, can be detected based on patterns in user network traffic and network topology data, e.g., by a monitoring server computer. Logged network traffic data can be filtered to identify anomalous data flows. The anomalous data flows can be data flows indicating connection timeouts such as failed Secure Sockets Layer/Transport Layer Security (SSL/TLS) handshakes. Sources and destinations of the anomalous data flows can be mapped to corresponding physical locations using the network topology data, and the anomalous data flows can be grouped by source and destination, in order to determine an impact or scope of a network connectivity disruption. Users of the network can be notified regarding the network connectivity disruption, and optionally, actions can be taken to reduce the impact of the network connectivity disruption.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=US&amp;NR=11539728B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=US&amp;NR=11539728B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Malov, Stanislav Vladimirovich</creatorcontrib><creatorcontrib>McCabe, Arran</creatorcontrib><creatorcontrib>Pavlakis, Nikolaos</creatorcontrib><creatorcontrib>Goychev, Ivan Emilov</creatorcontrib><creatorcontrib>O'Leary, Alan</creatorcontrib><title>Detecting connectivity disruptions by observing traffic flow patterns</title><description>Network connectivity disruptions impacting users of a network, can be detected based on patterns in user network traffic and network topology data, e.g., by a monitoring server computer. Logged network traffic data can be filtered to identify anomalous data flows. The anomalous data flows can be data flows indicating connection timeouts such as failed Secure Sockets Layer/Transport Layer Security (SSL/TLS) handshakes. Sources and destinations of the anomalous data flows can be mapped to corresponding physical locations using the network topology data, and the anomalous data flows can be grouped by source and destination, in order to determine an impact or scope of a network connectivity disruption. Users of the network can be notified regarding the network connectivity disruption, and optionally, actions can be taken to reduce the impact of the network connectivity disruption.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1SS1JTS7JzEtXSM7PywMxyzJLKhVSMouLSgtKMvPzihWSKhXyk4pTi8pAqkqKEtPSMpMV0nLyyxUKEktKUovyinkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhqbGluZGFk6ExMWoAeoo0cg</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Malov, Stanislav Vladimirovich</creator><creator>McCabe, Arran</creator><creator>Pavlakis, Nikolaos</creator><creator>Goychev, Ivan Emilov</creator><creator>O'Leary, Alan</creator><scope>EVB</scope></search><sort><creationdate>20221227</creationdate><title>Detecting connectivity disruptions by observing traffic flow patterns</title><author>Malov, Stanislav Vladimirovich ; McCabe, Arran ; Pavlakis, Nikolaos ; Goychev, Ivan Emilov ; O'Leary, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11539728B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Malov, Stanislav Vladimirovich</creatorcontrib><creatorcontrib>McCabe, Arran</creatorcontrib><creatorcontrib>Pavlakis, Nikolaos</creatorcontrib><creatorcontrib>Goychev, Ivan Emilov</creatorcontrib><creatorcontrib>O'Leary, Alan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malov, Stanislav Vladimirovich</au><au>McCabe, Arran</au><au>Pavlakis, Nikolaos</au><au>Goychev, Ivan Emilov</au><au>O'Leary, Alan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detecting connectivity disruptions by observing traffic flow patterns</title><date>2022-12-27</date><risdate>2022</risdate><abstract>Network connectivity disruptions impacting users of a network, can be detected based on patterns in user network traffic and network topology data, e.g., by a monitoring server computer. Logged network traffic data can be filtered to identify anomalous data flows. The anomalous data flows can be data flows indicating connection timeouts such as failed Secure Sockets Layer/Transport Layer Security (SSL/TLS) handshakes. Sources and destinations of the anomalous data flows can be mapped to corresponding physical locations using the network topology data, and the anomalous data flows can be grouped by source and destination, in order to determine an impact or scope of a network connectivity disruption. Users of the network can be notified regarding the network connectivity disruption, and optionally, actions can be taken to reduce the impact of the network connectivity disruption.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11539728B1
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Detecting connectivity disruptions by observing traffic flow patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Malov,%20Stanislav%20Vladimirovich&rft.date=2022-12-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11539728B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true