Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests

Systems and methods for unsupervised training and evaluation of anomaly detection models are described. In some embodiments, an unsupervised process comprises generating an approximation of a data distribution for a training dataset including varying values for a metric of a computing resource. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garvey, Dustin, Salunke, Sampanna Shahaji, BahenaTapia, Dario, Gopalakrishnan, Sumathi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Garvey, Dustin
Salunke, Sampanna Shahaji
BahenaTapia, Dario
Gopalakrishnan, Sumathi
description Systems and methods for unsupervised training and evaluation of anomaly detection models are described. In some embodiments, an unsupervised process comprises generating an approximation of a data distribution for a training dataset including varying values for a metric of a computing resource. The process further determines, based on the size of the training dataset, a first quantile probability and a second quantile probability that represent an interval for covering a prescribed proportion of values for the metric within a prescribed confidence level. The process further trains a lower limit of the anomaly detection model using a first quantile that represents the first quantile probability in the approximation of the data distribution and an upper limit using a second quantile that represents the second quantile probability in the approximation. The trained upper and lower limits may be used to monitor input data for anomalous behavior and, if detected, trigger responsive action(s).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11537940B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11537940B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11537940B23</originalsourceid><addsrcrecordid>eNqNyzEKwkAQheE0FqLeYTxAwBhFbBXFPlrLkp3Ehc3MsjNJSOvJXcEDWL3i_d88e1eTKHYChix0qC-2Ag1H6En6gHFwgjad3Bk_gUXFWh0T9OKoBWLKg4kmwehqUPYYDdUIjjRZ4wV4wAgGxDv7FaMjyyNwA5pb16KoLLNZk0pc_XaRra-X-_mWY-AnSjA1EurzURXFvjwcd5vTtvyn-QCcNUs_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests</title><source>esp@cenet</source><creator>Garvey, Dustin ; Salunke, Sampanna Shahaji ; BahenaTapia, Dario ; Gopalakrishnan, Sumathi</creator><creatorcontrib>Garvey, Dustin ; Salunke, Sampanna Shahaji ; BahenaTapia, Dario ; Gopalakrishnan, Sumathi</creatorcontrib><description>Systems and methods for unsupervised training and evaluation of anomaly detection models are described. In some embodiments, an unsupervised process comprises generating an approximation of a data distribution for a training dataset including varying values for a metric of a computing resource. The process further determines, based on the size of the training dataset, a first quantile probability and a second quantile probability that represent an interval for covering a prescribed proportion of values for the metric within a prescribed confidence level. The process further trains a lower limit of the anomaly detection model using a first quantile that represents the first quantile probability in the approximation of the data distribution and an upper limit using a second quantile that represents the second quantile probability in the approximation. The trained upper and lower limits may be used to monitor input data for anomalous behavior and, if detected, trigger responsive action(s).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=US&amp;NR=11537940B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=US&amp;NR=11537940B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Garvey, Dustin</creatorcontrib><creatorcontrib>Salunke, Sampanna Shahaji</creatorcontrib><creatorcontrib>BahenaTapia, Dario</creatorcontrib><creatorcontrib>Gopalakrishnan, Sumathi</creatorcontrib><title>Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests</title><description>Systems and methods for unsupervised training and evaluation of anomaly detection models are described. In some embodiments, an unsupervised process comprises generating an approximation of a data distribution for a training dataset including varying values for a metric of a computing resource. The process further determines, based on the size of the training dataset, a first quantile probability and a second quantile probability that represent an interval for covering a prescribed proportion of values for the metric within a prescribed confidence level. The process further trains a lower limit of the anomaly detection model using a first quantile that represents the first quantile probability in the approximation of the data distribution and an upper limit using a second quantile that represents the second quantile probability in the approximation. The trained upper and lower limits may be used to monitor input data for anomalous behavior and, if detected, trigger responsive action(s).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQheE0FqLeYTxAwBhFbBXFPlrLkp3Ehc3MsjNJSOvJXcEDWL3i_d88e1eTKHYChix0qC-2Ag1H6En6gHFwgjad3Bk_gUXFWh0T9OKoBWLKg4kmwehqUPYYDdUIjjRZ4wV4wAgGxDv7FaMjyyNwA5pb16KoLLNZk0pc_XaRra-X-_mWY-AnSjA1EurzURXFvjwcd5vTtvyn-QCcNUs_</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Garvey, Dustin</creator><creator>Salunke, Sampanna Shahaji</creator><creator>BahenaTapia, Dario</creator><creator>Gopalakrishnan, Sumathi</creator><scope>EVB</scope></search><sort><creationdate>20221227</creationdate><title>Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests</title><author>Garvey, Dustin ; Salunke, Sampanna Shahaji ; BahenaTapia, Dario ; Gopalakrishnan, Sumathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11537940B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Garvey, Dustin</creatorcontrib><creatorcontrib>Salunke, Sampanna Shahaji</creatorcontrib><creatorcontrib>BahenaTapia, Dario</creatorcontrib><creatorcontrib>Gopalakrishnan, Sumathi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garvey, Dustin</au><au>Salunke, Sampanna Shahaji</au><au>BahenaTapia, Dario</au><au>Gopalakrishnan, Sumathi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests</title><date>2022-12-27</date><risdate>2022</risdate><abstract>Systems and methods for unsupervised training and evaluation of anomaly detection models are described. In some embodiments, an unsupervised process comprises generating an approximation of a data distribution for a training dataset including varying values for a metric of a computing resource. The process further determines, based on the size of the training dataset, a first quantile probability and a second quantile probability that represent an interval for covering a prescribed proportion of values for the metric within a prescribed confidence level. The process further trains a lower limit of the anomaly detection model using a first quantile that represents the first quantile probability in the approximation of the data distribution and an upper limit using a second quantile that represents the second quantile probability in the approximation. The trained upper and lower limits may be used to monitor input data for anomalous behavior and, if detected, trigger responsive action(s).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11537940B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Systems and methods for unsupervised anomaly detection using non-parametric tolerance intervals over a sliding window of t-digests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Garvey,%20Dustin&rft.date=2022-12-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11537940B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true