Bias mitigating machine learning training system
A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observ...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Abbey, Ralph Walter Hunt, Xin Jiang Wu, Xinmin |
description | A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11531845B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11531845B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11531845B13</originalsourceid><addsrcrecordid>eNrjZDBwykwsVsjNLMlMTyzJzEtXyE1MzsjMS1XISU0sygMJlBQlZoIZxZXFJam5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7UkPjTY0NDU2NDCxNTJ0JgYNQB7CSuz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bias mitigating machine learning training system</title><source>esp@cenet</source><creator>Abbey, Ralph Walter ; Hunt, Xin Jiang ; Wu, Xinmin</creator><creatorcontrib>Abbey, Ralph Walter ; Hunt, Xin Jiang ; Wu, Xinmin</creatorcontrib><description>A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=US&NR=11531845B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=US&NR=11531845B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Abbey, Ralph Walter</creatorcontrib><creatorcontrib>Hunt, Xin Jiang</creatorcontrib><creatorcontrib>Wu, Xinmin</creatorcontrib><title>Bias mitigating machine learning training system</title><description>A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBwykwsVsjNLMlMTyzJzEtXyE1MzsjMS1XISU0sygMJlBQlZoIZxZXFJam5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7UkPjTY0NDU2NDCxNTJ0JgYNQB7CSuz</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Abbey, Ralph Walter</creator><creator>Hunt, Xin Jiang</creator><creator>Wu, Xinmin</creator><scope>EVB</scope></search><sort><creationdate>20221220</creationdate><title>Bias mitigating machine learning training system</title><author>Abbey, Ralph Walter ; Hunt, Xin Jiang ; Wu, Xinmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11531845B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbey, Ralph Walter</creatorcontrib><creatorcontrib>Hunt, Xin Jiang</creatorcontrib><creatorcontrib>Wu, Xinmin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbey, Ralph Walter</au><au>Hunt, Xin Jiang</au><au>Wu, Xinmin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bias mitigating machine learning training system</title><date>2022-12-20</date><risdate>2022</risdate><abstract>A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11531845B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Bias mitigating machine learning training system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Abbey,%20Ralph%20Walter&rft.date=2022-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11531845B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |