Automatically assigning semantic role labels to parts of documents
Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downst...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Begun, Andrew Paul Toprani, Bhaven Jaffri, Taqi Marti Orosa, Luis Paoli, Jean Taron, Michael Sawicki, Marcin Zhou, Xiaoquan Pavlopoulou, Christina Wu, Zhaofeng Palmer, Michael Gupta, Kush Sarangi, Swagatika Wadia, Zubin Rustom Hoang, Andrew Minh Pricoiu, Elena Zhang, Yue DeRose, Steven Watson, David Shehadeh, Manar Paliakkara, Jerome George Fan, Joshua Yongshin Liu, Zhanlin White, Eric |
description | Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11514238B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11514238B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11514238B23</originalsourceid><addsrcrecordid>eNrjZHByLC3Jz00syUxOzMmpVEgsLs5Mz8vMS1coTs1NzAMKKxTl56Qq5CQmpeYUK5TkKxQkFpUUK-SnKaTkJ5fmpuaVFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDU0MTI2MLJyNjYtQAAH1nMpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatically assigning semantic role labels to parts of documents</title><source>esp@cenet</source><creator>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</creator><creatorcontrib>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</creatorcontrib><description>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221129&DB=EPODOC&CC=US&NR=11514238B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221129&DB=EPODOC&CC=US&NR=11514238B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Begun, Andrew Paul</creatorcontrib><creatorcontrib>Toprani, Bhaven</creatorcontrib><creatorcontrib>Jaffri, Taqi</creatorcontrib><creatorcontrib>Marti Orosa, Luis</creatorcontrib><creatorcontrib>Paoli, Jean</creatorcontrib><creatorcontrib>Taron, Michael</creatorcontrib><creatorcontrib>Sawicki, Marcin</creatorcontrib><creatorcontrib>Zhou, Xiaoquan</creatorcontrib><creatorcontrib>Pavlopoulou, Christina</creatorcontrib><creatorcontrib>Wu, Zhaofeng</creatorcontrib><creatorcontrib>Palmer, Michael</creatorcontrib><creatorcontrib>Gupta, Kush</creatorcontrib><creatorcontrib>Sarangi, Swagatika</creatorcontrib><creatorcontrib>Wadia, Zubin Rustom</creatorcontrib><creatorcontrib>Hoang, Andrew Minh</creatorcontrib><creatorcontrib>Pricoiu, Elena</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>DeRose, Steven</creatorcontrib><creatorcontrib>Watson, David</creatorcontrib><creatorcontrib>Shehadeh, Manar</creatorcontrib><creatorcontrib>Paliakkara, Jerome George</creatorcontrib><creatorcontrib>Fan, Joshua Yongshin</creatorcontrib><creatorcontrib>Liu, Zhanlin</creatorcontrib><creatorcontrib>White, Eric</creatorcontrib><title>Automatically assigning semantic role labels to parts of documents</title><description>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByLC3Jz00syUxOzMmpVEgsLs5Mz8vMS1coTs1NzAMKKxTl56Qq5CQmpeYUK5TkKxQkFpUUK-SnKaTkJ5fmpuaVFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDU0MTI2MLJyNjYtQAAH1nMpg</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Begun, Andrew Paul</creator><creator>Toprani, Bhaven</creator><creator>Jaffri, Taqi</creator><creator>Marti Orosa, Luis</creator><creator>Paoli, Jean</creator><creator>Taron, Michael</creator><creator>Sawicki, Marcin</creator><creator>Zhou, Xiaoquan</creator><creator>Pavlopoulou, Christina</creator><creator>Wu, Zhaofeng</creator><creator>Palmer, Michael</creator><creator>Gupta, Kush</creator><creator>Sarangi, Swagatika</creator><creator>Wadia, Zubin Rustom</creator><creator>Hoang, Andrew Minh</creator><creator>Pricoiu, Elena</creator><creator>Zhang, Yue</creator><creator>DeRose, Steven</creator><creator>Watson, David</creator><creator>Shehadeh, Manar</creator><creator>Paliakkara, Jerome George</creator><creator>Fan, Joshua Yongshin</creator><creator>Liu, Zhanlin</creator><creator>White, Eric</creator><scope>EVB</scope></search><sort><creationdate>20221129</creationdate><title>Automatically assigning semantic role labels to parts of documents</title><author>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11514238B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Begun, Andrew Paul</creatorcontrib><creatorcontrib>Toprani, Bhaven</creatorcontrib><creatorcontrib>Jaffri, Taqi</creatorcontrib><creatorcontrib>Marti Orosa, Luis</creatorcontrib><creatorcontrib>Paoli, Jean</creatorcontrib><creatorcontrib>Taron, Michael</creatorcontrib><creatorcontrib>Sawicki, Marcin</creatorcontrib><creatorcontrib>Zhou, Xiaoquan</creatorcontrib><creatorcontrib>Pavlopoulou, Christina</creatorcontrib><creatorcontrib>Wu, Zhaofeng</creatorcontrib><creatorcontrib>Palmer, Michael</creatorcontrib><creatorcontrib>Gupta, Kush</creatorcontrib><creatorcontrib>Sarangi, Swagatika</creatorcontrib><creatorcontrib>Wadia, Zubin Rustom</creatorcontrib><creatorcontrib>Hoang, Andrew Minh</creatorcontrib><creatorcontrib>Pricoiu, Elena</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>DeRose, Steven</creatorcontrib><creatorcontrib>Watson, David</creatorcontrib><creatorcontrib>Shehadeh, Manar</creatorcontrib><creatorcontrib>Paliakkara, Jerome George</creatorcontrib><creatorcontrib>Fan, Joshua Yongshin</creatorcontrib><creatorcontrib>Liu, Zhanlin</creatorcontrib><creatorcontrib>White, Eric</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Begun, Andrew Paul</au><au>Toprani, Bhaven</au><au>Jaffri, Taqi</au><au>Marti Orosa, Luis</au><au>Paoli, Jean</au><au>Taron, Michael</au><au>Sawicki, Marcin</au><au>Zhou, Xiaoquan</au><au>Pavlopoulou, Christina</au><au>Wu, Zhaofeng</au><au>Palmer, Michael</au><au>Gupta, Kush</au><au>Sarangi, Swagatika</au><au>Wadia, Zubin Rustom</au><au>Hoang, Andrew Minh</au><au>Pricoiu, Elena</au><au>Zhang, Yue</au><au>DeRose, Steven</au><au>Watson, David</au><au>Shehadeh, Manar</au><au>Paliakkara, Jerome George</au><au>Fan, Joshua Yongshin</au><au>Liu, Zhanlin</au><au>White, Eric</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatically assigning semantic role labels to parts of documents</title><date>2022-11-29</date><risdate>2022</risdate><abstract>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11514238B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Automatically assigning semantic role labels to parts of documents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Begun,%20Andrew%20Paul&rft.date=2022-11-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11514238B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |