Automatically assigning semantic role labels to parts of documents

Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Begun, Andrew Paul, Toprani, Bhaven, Jaffri, Taqi, Marti Orosa, Luis, Paoli, Jean, Taron, Michael, Sawicki, Marcin, Zhou, Xiaoquan, Pavlopoulou, Christina, Wu, Zhaofeng, Palmer, Michael, Gupta, Kush, Sarangi, Swagatika, Wadia, Zubin Rustom, Hoang, Andrew Minh, Pricoiu, Elena, Zhang, Yue, DeRose, Steven, Watson, David, Shehadeh, Manar, Paliakkara, Jerome George, Fan, Joshua Yongshin, Liu, Zhanlin, White, Eric
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Begun, Andrew Paul
Toprani, Bhaven
Jaffri, Taqi
Marti Orosa, Luis
Paoli, Jean
Taron, Michael
Sawicki, Marcin
Zhou, Xiaoquan
Pavlopoulou, Christina
Wu, Zhaofeng
Palmer, Michael
Gupta, Kush
Sarangi, Swagatika
Wadia, Zubin Rustom
Hoang, Andrew Minh
Pricoiu, Elena
Zhang, Yue
DeRose, Steven
Watson, David
Shehadeh, Manar
Paliakkara, Jerome George
Fan, Joshua Yongshin
Liu, Zhanlin
White, Eric
description Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11514238B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11514238B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11514238B23</originalsourceid><addsrcrecordid>eNrjZHByLC3Jz00syUxOzMmpVEgsLs5Mz8vMS1coTs1NzAMKKxTl56Qq5CQmpeYUK5TkKxQkFpUUK-SnKaTkJ5fmpuaVFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDU0MTI2MLJyNjYtQAAH1nMpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatically assigning semantic role labels to parts of documents</title><source>esp@cenet</source><creator>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</creator><creatorcontrib>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</creatorcontrib><description>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221129&amp;DB=EPODOC&amp;CC=US&amp;NR=11514238B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221129&amp;DB=EPODOC&amp;CC=US&amp;NR=11514238B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Begun, Andrew Paul</creatorcontrib><creatorcontrib>Toprani, Bhaven</creatorcontrib><creatorcontrib>Jaffri, Taqi</creatorcontrib><creatorcontrib>Marti Orosa, Luis</creatorcontrib><creatorcontrib>Paoli, Jean</creatorcontrib><creatorcontrib>Taron, Michael</creatorcontrib><creatorcontrib>Sawicki, Marcin</creatorcontrib><creatorcontrib>Zhou, Xiaoquan</creatorcontrib><creatorcontrib>Pavlopoulou, Christina</creatorcontrib><creatorcontrib>Wu, Zhaofeng</creatorcontrib><creatorcontrib>Palmer, Michael</creatorcontrib><creatorcontrib>Gupta, Kush</creatorcontrib><creatorcontrib>Sarangi, Swagatika</creatorcontrib><creatorcontrib>Wadia, Zubin Rustom</creatorcontrib><creatorcontrib>Hoang, Andrew Minh</creatorcontrib><creatorcontrib>Pricoiu, Elena</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>DeRose, Steven</creatorcontrib><creatorcontrib>Watson, David</creatorcontrib><creatorcontrib>Shehadeh, Manar</creatorcontrib><creatorcontrib>Paliakkara, Jerome George</creatorcontrib><creatorcontrib>Fan, Joshua Yongshin</creatorcontrib><creatorcontrib>Liu, Zhanlin</creatorcontrib><creatorcontrib>White, Eric</creatorcontrib><title>Automatically assigning semantic role labels to parts of documents</title><description>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByLC3Jz00syUxOzMmpVEgsLs5Mz8vMS1coTs1NzAMKKxTl56Qq5CQmpeYUK5TkKxQkFpUUK-SnKaTkJ5fmpuaVFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDU0MTI2MLJyNjYtQAAH1nMpg</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Begun, Andrew Paul</creator><creator>Toprani, Bhaven</creator><creator>Jaffri, Taqi</creator><creator>Marti Orosa, Luis</creator><creator>Paoli, Jean</creator><creator>Taron, Michael</creator><creator>Sawicki, Marcin</creator><creator>Zhou, Xiaoquan</creator><creator>Pavlopoulou, Christina</creator><creator>Wu, Zhaofeng</creator><creator>Palmer, Michael</creator><creator>Gupta, Kush</creator><creator>Sarangi, Swagatika</creator><creator>Wadia, Zubin Rustom</creator><creator>Hoang, Andrew Minh</creator><creator>Pricoiu, Elena</creator><creator>Zhang, Yue</creator><creator>DeRose, Steven</creator><creator>Watson, David</creator><creator>Shehadeh, Manar</creator><creator>Paliakkara, Jerome George</creator><creator>Fan, Joshua Yongshin</creator><creator>Liu, Zhanlin</creator><creator>White, Eric</creator><scope>EVB</scope></search><sort><creationdate>20221129</creationdate><title>Automatically assigning semantic role labels to parts of documents</title><author>Begun, Andrew Paul ; Toprani, Bhaven ; Jaffri, Taqi ; Marti Orosa, Luis ; Paoli, Jean ; Taron, Michael ; Sawicki, Marcin ; Zhou, Xiaoquan ; Pavlopoulou, Christina ; Wu, Zhaofeng ; Palmer, Michael ; Gupta, Kush ; Sarangi, Swagatika ; Wadia, Zubin Rustom ; Hoang, Andrew Minh ; Pricoiu, Elena ; Zhang, Yue ; DeRose, Steven ; Watson, David ; Shehadeh, Manar ; Paliakkara, Jerome George ; Fan, Joshua Yongshin ; Liu, Zhanlin ; White, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11514238B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Begun, Andrew Paul</creatorcontrib><creatorcontrib>Toprani, Bhaven</creatorcontrib><creatorcontrib>Jaffri, Taqi</creatorcontrib><creatorcontrib>Marti Orosa, Luis</creatorcontrib><creatorcontrib>Paoli, Jean</creatorcontrib><creatorcontrib>Taron, Michael</creatorcontrib><creatorcontrib>Sawicki, Marcin</creatorcontrib><creatorcontrib>Zhou, Xiaoquan</creatorcontrib><creatorcontrib>Pavlopoulou, Christina</creatorcontrib><creatorcontrib>Wu, Zhaofeng</creatorcontrib><creatorcontrib>Palmer, Michael</creatorcontrib><creatorcontrib>Gupta, Kush</creatorcontrib><creatorcontrib>Sarangi, Swagatika</creatorcontrib><creatorcontrib>Wadia, Zubin Rustom</creatorcontrib><creatorcontrib>Hoang, Andrew Minh</creatorcontrib><creatorcontrib>Pricoiu, Elena</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>DeRose, Steven</creatorcontrib><creatorcontrib>Watson, David</creatorcontrib><creatorcontrib>Shehadeh, Manar</creatorcontrib><creatorcontrib>Paliakkara, Jerome George</creatorcontrib><creatorcontrib>Fan, Joshua Yongshin</creatorcontrib><creatorcontrib>Liu, Zhanlin</creatorcontrib><creatorcontrib>White, Eric</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Begun, Andrew Paul</au><au>Toprani, Bhaven</au><au>Jaffri, Taqi</au><au>Marti Orosa, Luis</au><au>Paoli, Jean</au><au>Taron, Michael</au><au>Sawicki, Marcin</au><au>Zhou, Xiaoquan</au><au>Pavlopoulou, Christina</au><au>Wu, Zhaofeng</au><au>Palmer, Michael</au><au>Gupta, Kush</au><au>Sarangi, Swagatika</au><au>Wadia, Zubin Rustom</au><au>Hoang, Andrew Minh</au><au>Pricoiu, Elena</au><au>Zhang, Yue</au><au>DeRose, Steven</au><au>Watson, David</au><au>Shehadeh, Manar</au><au>Paliakkara, Jerome George</au><au>Fan, Joshua Yongshin</au><au>Liu, Zhanlin</au><au>White, Eric</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatically assigning semantic role labels to parts of documents</title><date>2022-11-29</date><risdate>2022</risdate><abstract>Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called "context", to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set). Similarity is not limited to exact or fuzzy string or property comparisons, but may include similarity of natural language grammatical structure, ML (machine learning) techniques such as measuring similarity of word, chunk, and other embeddings, and the datatypes and semantic roles of previously-identified chunks.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11514238B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automatically assigning semantic role labels to parts of documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Begun,%20Andrew%20Paul&rft.date=2022-11-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11514238B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true