Bandwidth allocation using machine learning

Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for bandwidth allocation using machine learning. In some implementations, a request for bandwidth in a communications system is received. Data indicative of a measure of bandwidth requested and a status o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roy, Rajarshi, Tang, Yeqing, Hu, Bin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Roy, Rajarshi
Tang, Yeqing
Hu, Bin
description Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for bandwidth allocation using machine learning. In some implementations, a request for bandwidth in a communications system is received. Data indicative of a measure of bandwidth requested and a status of the communication system are provided as input to a machine learning model. One or more outputs from the machine learning model indicate an amount of bandwidth to allocate to the terminal, and bandwidth is allocated to the terminal based on the one or more outputs from the machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11503615B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11503615B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11503615B23</originalsourceid><addsrcrecordid>eNrjZNB2SsxLKc9MKclQSMzJyU9OLMnMz1MoLc7MS1fITUzOyMxLVchJTSzKAwrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQ1MDYzNDUycjY2LUAAB7Oim4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bandwidth allocation using machine learning</title><source>esp@cenet</source><creator>Roy, Rajarshi ; Tang, Yeqing ; Hu, Bin</creator><creatorcontrib>Roy, Rajarshi ; Tang, Yeqing ; Hu, Bin</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for bandwidth allocation using machine learning. In some implementations, a request for bandwidth in a communications system is received. Data indicative of a measure of bandwidth requested and a status of the communication system are provided as input to a machine learning model. One or more outputs from the machine learning model indicate an amount of bandwidth to allocate to the terminal, and bandwidth is allocated to the terminal based on the one or more outputs from the machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; MULTIPLEX COMMUNICATION ; PHYSICS ; TRANSMISSION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=US&amp;NR=11503615B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=US&amp;NR=11503615B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Roy, Rajarshi</creatorcontrib><creatorcontrib>Tang, Yeqing</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><title>Bandwidth allocation using machine learning</title><description>Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for bandwidth allocation using machine learning. In some implementations, a request for bandwidth in a communications system is received. Data indicative of a measure of bandwidth requested and a status of the communication system are provided as input to a machine learning model. One or more outputs from the machine learning model indicate an amount of bandwidth to allocate to the terminal, and bandwidth is allocated to the terminal based on the one or more outputs from the machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>MULTIPLEX COMMUNICATION</subject><subject>PHYSICS</subject><subject>TRANSMISSION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2SsxLKc9MKclQSMzJyU9OLMnMz1MoLc7MS1fITUzOyMxLVchJTSzKAwrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDQ1MDYzNDUycjY2LUAAB7Oim4</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Roy, Rajarshi</creator><creator>Tang, Yeqing</creator><creator>Hu, Bin</creator><scope>EVB</scope></search><sort><creationdate>20221115</creationdate><title>Bandwidth allocation using machine learning</title><author>Roy, Rajarshi ; Tang, Yeqing ; Hu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11503615B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>MULTIPLEX COMMUNICATION</topic><topic>PHYSICS</topic><topic>TRANSMISSION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Rajarshi</creatorcontrib><creatorcontrib>Tang, Yeqing</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Rajarshi</au><au>Tang, Yeqing</au><au>Hu, Bin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bandwidth allocation using machine learning</title><date>2022-11-15</date><risdate>2022</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for bandwidth allocation using machine learning. In some implementations, a request for bandwidth in a communications system is received. Data indicative of a measure of bandwidth requested and a status of the communication system are provided as input to a machine learning model. One or more outputs from the machine learning model indicate an amount of bandwidth to allocate to the terminal, and bandwidth is allocated to the terminal based on the one or more outputs from the machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11503615B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
MULTIPLEX COMMUNICATION
PHYSICS
TRANSMISSION
WIRELESS COMMUNICATIONS NETWORKS
title Bandwidth allocation using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Roy,%20Rajarshi&rft.date=2022-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11503615B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true