Cloud computing data compression for allreduce in deep learning

In deep learning, and in particular, for data compression for allreduce in deep learning, a gradient may be compressed for synchronization in a data parallel deep neural network training for allreduce by sharing a consensus vector between each node in a plurality of nodes to ensure identical indexin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Finkler, Ulrich, Zhang, Wei, Cho, Minsik
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Finkler, Ulrich
Zhang, Wei
Cho, Minsik
description In deep learning, and in particular, for data compression for allreduce in deep learning, a gradient may be compressed for synchronization in a data parallel deep neural network training for allreduce by sharing a consensus vector between each node in a plurality of nodes to ensure identical indexing in each of the plurality of nodes prior to performing sparse encoding.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11501160B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11501160B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11501160B23</originalsourceid><addsrcrecordid>eNrjZLB3zskvTVFIzs8tKC3JzEtXSEksSQRzi1KLizPz8xTS8osUEnNyilJTSpNTFTLzFFJSUwsUclITi_KA6nkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhqYGhoZmBk5ExMWoAoGIxDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cloud computing data compression for allreduce in deep learning</title><source>esp@cenet</source><creator>Finkler, Ulrich ; Zhang, Wei ; Cho, Minsik</creator><creatorcontrib>Finkler, Ulrich ; Zhang, Wei ; Cho, Minsik</creatorcontrib><description>In deep learning, and in particular, for data compression for allreduce in deep learning, a gradient may be compressed for synchronization in a data parallel deep neural network training for allreduce by sharing a consensus vector between each node in a plurality of nodes to ensure identical indexing in each of the plurality of nodes prior to performing sparse encoding.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; CALCULATING ; CODE CONVERSION IN GENERAL ; CODING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DECODING ; ELECTRICITY ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=US&amp;NR=11501160B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=US&amp;NR=11501160B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Finkler, Ulrich</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Cho, Minsik</creatorcontrib><title>Cloud computing data compression for allreduce in deep learning</title><description>In deep learning, and in particular, for data compression for allreduce in deep learning, a gradient may be compressed for synchronization in a data parallel deep neural network training for allreduce by sharing a consensus vector between each node in a plurality of nodes to ensure identical indexing in each of the plurality of nodes prior to performing sparse encoding.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>CALCULATING</subject><subject>CODE CONVERSION IN GENERAL</subject><subject>CODING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DECODING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3zskvTVFIzs8tKC3JzEtXSEksSQRzi1KLizPz8xTS8osUEnNyilJTSpNTFTLzFFJSUwsUclITi_KA6nkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhqYGhoZmBk5ExMWoAoGIxDg</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Finkler, Ulrich</creator><creator>Zhang, Wei</creator><creator>Cho, Minsik</creator><scope>EVB</scope></search><sort><creationdate>20221115</creationdate><title>Cloud computing data compression for allreduce in deep learning</title><author>Finkler, Ulrich ; Zhang, Wei ; Cho, Minsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11501160B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>CALCULATING</topic><topic>CODE CONVERSION IN GENERAL</topic><topic>CODING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DECODING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Finkler, Ulrich</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Cho, Minsik</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finkler, Ulrich</au><au>Zhang, Wei</au><au>Cho, Minsik</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cloud computing data compression for allreduce in deep learning</title><date>2022-11-15</date><risdate>2022</risdate><abstract>In deep learning, and in particular, for data compression for allreduce in deep learning, a gradient may be compressed for synchronization in a data parallel deep neural network training for allreduce by sharing a consensus vector between each node in a plurality of nodes to ensure identical indexing in each of the plurality of nodes prior to performing sparse encoding.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11501160B2
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
CALCULATING
CODE CONVERSION IN GENERAL
CODING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DECODING
ELECTRICITY
PHYSICS
title Cloud computing data compression for allreduce in deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Finkler,%20Ulrich&rft.date=2022-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11501160B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true