Latent code for unsupervised domain adaptation

A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chidlovskii, Boris
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chidlovskii, Boris
description A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial network outputs a first prediction indicating whether each of the source encoder representations and each of the target encoder representations originate from the source domain or the target domain. The generative adversarial network outputs a second prediction of the latent code for each of the source encoder representations and each of the target encoder representations. The target encoder and the generative adversarial network are trained by repeatedly updating parameters of the target encoder and the generative adversarial network until one or more predetermined stopping conditions occur.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11494660B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11494660B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11494660B23</originalsourceid><addsrcrecordid>eNrjZNDzSSxJzStRSM5PSVVIyy9SKM0rLi1ILSrLLE5NUUjJz03MzFNITEksKEksyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmliZmZgZORsbEqAEAFhEq-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Latent code for unsupervised domain adaptation</title><source>esp@cenet</source><creator>Chidlovskii, Boris</creator><creatorcontrib>Chidlovskii, Boris</creatorcontrib><description>A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial network outputs a first prediction indicating whether each of the source encoder representations and each of the target encoder representations originate from the source domain or the target domain. The generative adversarial network outputs a second prediction of the latent code for each of the source encoder representations and each of the target encoder representations. The target encoder and the generative adversarial network are trained by repeatedly updating parameters of the target encoder and the generative adversarial network until one or more predetermined stopping conditions occur.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221108&amp;DB=EPODOC&amp;CC=US&amp;NR=11494660B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221108&amp;DB=EPODOC&amp;CC=US&amp;NR=11494660B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chidlovskii, Boris</creatorcontrib><title>Latent code for unsupervised domain adaptation</title><description>A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial network outputs a first prediction indicating whether each of the source encoder representations and each of the target encoder representations originate from the source domain or the target domain. The generative adversarial network outputs a second prediction of the latent code for each of the source encoder representations and each of the target encoder representations. The target encoder and the generative adversarial network are trained by repeatedly updating parameters of the target encoder and the generative adversarial network until one or more predetermined stopping conditions occur.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDzSSxJzStRSM5PSVVIyy9SKM0rLi1ILSrLLE5NUUjJz03MzFNITEksKEksyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmliZmZgZORsbEqAEAFhEq-w</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Chidlovskii, Boris</creator><scope>EVB</scope></search><sort><creationdate>20221108</creationdate><title>Latent code for unsupervised domain adaptation</title><author>Chidlovskii, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11494660B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chidlovskii, Boris</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chidlovskii, Boris</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Latent code for unsupervised domain adaptation</title><date>2022-11-08</date><risdate>2022</risdate><abstract>A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial network outputs a first prediction indicating whether each of the source encoder representations and each of the target encoder representations originate from the source domain or the target domain. The generative adversarial network outputs a second prediction of the latent code for each of the source encoder representations and each of the target encoder representations. The target encoder and the generative adversarial network are trained by repeatedly updating parameters of the target encoder and the generative adversarial network until one or more predetermined stopping conditions occur.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11494660B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Latent code for unsupervised domain adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chidlovskii,%20Boris&rft.date=2022-11-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11494660B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true