Decision support system for individualizing radiotherapy dose

For decision support in a medical therapy, machine learning provides a machine-learned generator for generating a prediction of outcome for therapy personalized to a patient. The outcome prediction may be used to determine dose. To assist in decision support, a regression analysis of the cohort used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abazeed, Mohamed, Lou, Bin, Kamen, Ali, Mistry, Nilesh, Ladic, Lance Anthony
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Abazeed, Mohamed
Lou, Bin
Kamen, Ali
Mistry, Nilesh
Ladic, Lance Anthony
description For decision support in a medical therapy, machine learning provides a machine-learned generator for generating a prediction of outcome for therapy personalized to a patient. The outcome prediction may be used to determine dose. To assist in decision support, a regression analysis of the cohort used for machine training relates the outcome from the machine-learned generator to the dose and an actual control time (e.g., time-to-event). The dose that minimizes side effects while minimizing risk of failure to a time for any given patient is determined from the outcome for that patient and a calibration from the regression analysis.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11491350B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11491350B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11491350B23</originalsourceid><addsrcrecordid>eNrjZLB1SU3OLM7Mz1MoLi0oyC8qUSiuLC5JzVVIyy9SyMxLySzLTClNzMmsysxLVyhKTMnML8lILUosqFRIyS9O5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmlobGpgZORsbEqAEAk0ExQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Decision support system for individualizing radiotherapy dose</title><source>esp@cenet</source><creator>Abazeed, Mohamed ; Lou, Bin ; Kamen, Ali ; Mistry, Nilesh ; Ladic, Lance Anthony</creator><creatorcontrib>Abazeed, Mohamed ; Lou, Bin ; Kamen, Ali ; Mistry, Nilesh ; Ladic, Lance Anthony</creatorcontrib><description>For decision support in a medical therapy, machine learning provides a machine-learned generator for generating a prediction of outcome for therapy personalized to a patient. The outcome prediction may be used to determine dose. To assist in decision support, a regression analysis of the cohort used for machine training relates the outcome from the machine-learned generator to the dose and an actual control time (e.g., time-to-event). The dose that minimizes side effects while minimizing risk of failure to a time for any given patient is determined from the outcome for that patient and a calibration from the regression analysis.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTROTHERAPY ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; RADIATION THERAPY ; SURGERY ; ULTRASOUND THERAPY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221108&amp;DB=EPODOC&amp;CC=US&amp;NR=11491350B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221108&amp;DB=EPODOC&amp;CC=US&amp;NR=11491350B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Abazeed, Mohamed</creatorcontrib><creatorcontrib>Lou, Bin</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><creatorcontrib>Mistry, Nilesh</creatorcontrib><creatorcontrib>Ladic, Lance Anthony</creatorcontrib><title>Decision support system for individualizing radiotherapy dose</title><description>For decision support in a medical therapy, machine learning provides a machine-learned generator for generating a prediction of outcome for therapy personalized to a patient. The outcome prediction may be used to determine dose. To assist in decision support, a regression analysis of the cohort used for machine training relates the outcome from the machine-learned generator to the dose and an actual control time (e.g., time-to-event). The dose that minimizes side effects while minimizing risk of failure to a time for any given patient is determined from the outcome for that patient and a calibration from the regression analysis.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTROTHERAPY</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>RADIATION THERAPY</subject><subject>SURGERY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB1SU3OLM7Mz1MoLi0oyC8qUSiuLC5JzVVIyy9SyMxLySzLTClNzMmsysxLVyhKTMnML8lILUosqFRIyS9O5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmlobGpgZORsbEqAEAk0ExQA</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Abazeed, Mohamed</creator><creator>Lou, Bin</creator><creator>Kamen, Ali</creator><creator>Mistry, Nilesh</creator><creator>Ladic, Lance Anthony</creator><scope>EVB</scope></search><sort><creationdate>20221108</creationdate><title>Decision support system for individualizing radiotherapy dose</title><author>Abazeed, Mohamed ; Lou, Bin ; Kamen, Ali ; Mistry, Nilesh ; Ladic, Lance Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11491350B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTROTHERAPY</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>RADIATION THERAPY</topic><topic>SURGERY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>Abazeed, Mohamed</creatorcontrib><creatorcontrib>Lou, Bin</creatorcontrib><creatorcontrib>Kamen, Ali</creatorcontrib><creatorcontrib>Mistry, Nilesh</creatorcontrib><creatorcontrib>Ladic, Lance Anthony</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abazeed, Mohamed</au><au>Lou, Bin</au><au>Kamen, Ali</au><au>Mistry, Nilesh</au><au>Ladic, Lance Anthony</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Decision support system for individualizing radiotherapy dose</title><date>2022-11-08</date><risdate>2022</risdate><abstract>For decision support in a medical therapy, machine learning provides a machine-learned generator for generating a prediction of outcome for therapy personalized to a patient. The outcome prediction may be used to determine dose. To assist in decision support, a regression analysis of the cohort used for machine training relates the outcome from the machine-learned generator to the dose and an actual control time (e.g., time-to-event). The dose that minimizes side effects while minimizing risk of failure to a time for any given patient is determined from the outcome for that patient and a calibration from the regression analysis.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11491350B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
ELECTROTHERAPY
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
MAGNETOTHERAPY
MEDICAL OR VETERINARY SCIENCE
PHYSICS
RADIATION THERAPY
SURGERY
ULTRASOUND THERAPY
title Decision support system for individualizing radiotherapy dose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Abazeed,%20Mohamed&rft.date=2022-11-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11491350B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true