Service architecture for entity and relationship detection in unstructured text

Techniques for entity and relationship detect from unstructured text as a service are described. A service may receive a request to identify entities within a provided unstructured text element, and the service may segment and tokenize the unstructured text and send the result to multiple services i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhatia, Parminder, Zhang, Borui, Doman, Tiberiu Mircea, Ravi, Arun Kumar, Khalilia, Mohammed, Senthivel, Thiruvarul Selvan, Sembium Varadarajan, Varun, Celikkaya, Emine Busra
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bhatia, Parminder
Zhang, Borui
Doman, Tiberiu Mircea
Ravi, Arun Kumar
Khalilia, Mohammed
Senthivel, Thiruvarul Selvan
Sembium Varadarajan, Varun
Celikkaya, Emine Busra
description Techniques for entity and relationship detect from unstructured text as a service are described. A service may receive a request to identify entities within a provided unstructured text element, and the service may segment and tokenize the unstructured text and send the result to multiple services implementing multiple deep machine learning models trained to identify particular entities. The service may send additional requests to an additional service or services implementing additional deep machine learning models to identify relationships between detected attributes and ones of the detected entities. The outputs from all services can be analyzed and consolidated into a single result that identifies the entities, any attributes of the entities, and confidence scores indicating the confidence in each detected entity.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11487942B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11487942B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11487942B13</originalsourceid><addsrcrecordid>eNqNi70KAjEQBq-xEPUd1gewiB7otYpiZ3FaHyH5jls4krDZiL69P_gAVsPAzLS6tJA7O5AVN7DCaRFQH4UQlPVJNngSjFY5hjxwIo9P9TbiQCVklfKdPCkeOq8mvR0zFj_OquXpeD2cV0ixQ07WIUC7W2tMvds29XpvNv80L9J-OCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Service architecture for entity and relationship detection in unstructured text</title><source>esp@cenet</source><creator>Bhatia, Parminder ; Zhang, Borui ; Doman, Tiberiu Mircea ; Ravi, Arun Kumar ; Khalilia, Mohammed ; Senthivel, Thiruvarul Selvan ; Sembium Varadarajan, Varun ; Celikkaya, Emine Busra</creator><creatorcontrib>Bhatia, Parminder ; Zhang, Borui ; Doman, Tiberiu Mircea ; Ravi, Arun Kumar ; Khalilia, Mohammed ; Senthivel, Thiruvarul Selvan ; Sembium Varadarajan, Varun ; Celikkaya, Emine Busra</creatorcontrib><description>Techniques for entity and relationship detect from unstructured text as a service are described. A service may receive a request to identify entities within a provided unstructured text element, and the service may segment and tokenize the unstructured text and send the result to multiple services implementing multiple deep machine learning models trained to identify particular entities. The service may send additional requests to an additional service or services implementing additional deep machine learning models to identify relationships between detected attributes and ones of the detected entities. The outputs from all services can be analyzed and consolidated into a single result that identifies the entities, any attributes of the entities, and confidence scores indicating the confidence in each detected entity.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221101&amp;DB=EPODOC&amp;CC=US&amp;NR=11487942B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221101&amp;DB=EPODOC&amp;CC=US&amp;NR=11487942B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bhatia, Parminder</creatorcontrib><creatorcontrib>Zhang, Borui</creatorcontrib><creatorcontrib>Doman, Tiberiu Mircea</creatorcontrib><creatorcontrib>Ravi, Arun Kumar</creatorcontrib><creatorcontrib>Khalilia, Mohammed</creatorcontrib><creatorcontrib>Senthivel, Thiruvarul Selvan</creatorcontrib><creatorcontrib>Sembium Varadarajan, Varun</creatorcontrib><creatorcontrib>Celikkaya, Emine Busra</creatorcontrib><title>Service architecture for entity and relationship detection in unstructured text</title><description>Techniques for entity and relationship detect from unstructured text as a service are described. A service may receive a request to identify entities within a provided unstructured text element, and the service may segment and tokenize the unstructured text and send the result to multiple services implementing multiple deep machine learning models trained to identify particular entities. The service may send additional requests to an additional service or services implementing additional deep machine learning models to identify relationships between detected attributes and ones of the detected entities. The outputs from all services can be analyzed and consolidated into a single result that identifies the entities, any attributes of the entities, and confidence scores indicating the confidence in each detected entity.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KAjEQBq-xEPUd1gewiB7otYpiZ3FaHyH5jls4krDZiL69P_gAVsPAzLS6tJA7O5AVN7DCaRFQH4UQlPVJNngSjFY5hjxwIo9P9TbiQCVklfKdPCkeOq8mvR0zFj_OquXpeD2cV0ixQ07WIUC7W2tMvds29XpvNv80L9J-OCA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Bhatia, Parminder</creator><creator>Zhang, Borui</creator><creator>Doman, Tiberiu Mircea</creator><creator>Ravi, Arun Kumar</creator><creator>Khalilia, Mohammed</creator><creator>Senthivel, Thiruvarul Selvan</creator><creator>Sembium Varadarajan, Varun</creator><creator>Celikkaya, Emine Busra</creator><scope>EVB</scope></search><sort><creationdate>20221101</creationdate><title>Service architecture for entity and relationship detection in unstructured text</title><author>Bhatia, Parminder ; Zhang, Borui ; Doman, Tiberiu Mircea ; Ravi, Arun Kumar ; Khalilia, Mohammed ; Senthivel, Thiruvarul Selvan ; Sembium Varadarajan, Varun ; Celikkaya, Emine Busra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11487942B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Parminder</creatorcontrib><creatorcontrib>Zhang, Borui</creatorcontrib><creatorcontrib>Doman, Tiberiu Mircea</creatorcontrib><creatorcontrib>Ravi, Arun Kumar</creatorcontrib><creatorcontrib>Khalilia, Mohammed</creatorcontrib><creatorcontrib>Senthivel, Thiruvarul Selvan</creatorcontrib><creatorcontrib>Sembium Varadarajan, Varun</creatorcontrib><creatorcontrib>Celikkaya, Emine Busra</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhatia, Parminder</au><au>Zhang, Borui</au><au>Doman, Tiberiu Mircea</au><au>Ravi, Arun Kumar</au><au>Khalilia, Mohammed</au><au>Senthivel, Thiruvarul Selvan</au><au>Sembium Varadarajan, Varun</au><au>Celikkaya, Emine Busra</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Service architecture for entity and relationship detection in unstructured text</title><date>2022-11-01</date><risdate>2022</risdate><abstract>Techniques for entity and relationship detect from unstructured text as a service are described. A service may receive a request to identify entities within a provided unstructured text element, and the service may segment and tokenize the unstructured text and send the result to multiple services implementing multiple deep machine learning models trained to identify particular entities. The service may send additional requests to an additional service or services implementing additional deep machine learning models to identify relationships between detected attributes and ones of the detected entities. The outputs from all services can be analyzed and consolidated into a single result that identifies the entities, any attributes of the entities, and confidence scores indicating the confidence in each detected entity.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11487942B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Service architecture for entity and relationship detection in unstructured text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bhatia,%20Parminder&rft.date=2022-11-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11487942B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true