Systems and methods for quantifying concrete surface roughness

The degree of concrete surface roughness contributes to the bond strength between two concrete surfaces for either new construction or repair and retrofitting of concrete structures. Provided are novel systems and methods with industrial application to quantify concrete surface roughness from images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Valikhani, Alireza, Mantawy, Islam Mohamed, Pouyanfar, Samira, Azizinamini, Atorod, Jahromi, Azadeh Jaberi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Valikhani, Alireza
Mantawy, Islam Mohamed
Pouyanfar, Samira
Azizinamini, Atorod
Jahromi, Azadeh Jaberi
description The degree of concrete surface roughness contributes to the bond strength between two concrete surfaces for either new construction or repair and retrofitting of concrete structures. Provided are novel systems and methods with industrial application to quantify concrete surface roughness from images which may be obtained from basic cameras or smartphones. A digital image processing system and method with a new index for concrete surface roughness based on the aggregate area-to-total surface area is provided. A machine learning method applying a combination of advanced techniques, including data augmentation and transfer learning, is utilized to categorize images based on the classification given during the learning process. Both methods compared favorably to a well-established method of 3D laser scanning.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11481891B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11481891B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11481891B13</originalsourceid><addsrcrecordid>eNrjZLALriwuSc0tVkjMS1HITS3JyE8pVkjLL1IoLE3MK8lMq8zMS1dIzs9LLkotSVUoLi1KS0xOVSjKL03PyEstLuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUDFeakl8aHBhoYmFoYWloZOhsbEqAEAp5IxaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for quantifying concrete surface roughness</title><source>esp@cenet</source><creator>Valikhani, Alireza ; Mantawy, Islam Mohamed ; Pouyanfar, Samira ; Azizinamini, Atorod ; Jahromi, Azadeh Jaberi</creator><creatorcontrib>Valikhani, Alireza ; Mantawy, Islam Mohamed ; Pouyanfar, Samira ; Azizinamini, Atorod ; Jahromi, Azadeh Jaberi</creatorcontrib><description>The degree of concrete surface roughness contributes to the bond strength between two concrete surfaces for either new construction or repair and retrofitting of concrete structures. Provided are novel systems and methods with industrial application to quantify concrete surface roughness from images which may be obtained from basic cameras or smartphones. A digital image processing system and method with a new index for concrete surface roughness based on the aggregate area-to-total surface area is provided. A machine learning method applying a combination of advanced techniques, including data augmentation and transfer learning, is utilized to categorize images based on the classification given during the learning process. Both methods compared favorably to a well-established method of 3D laser scanning.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221025&amp;DB=EPODOC&amp;CC=US&amp;NR=11481891B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221025&amp;DB=EPODOC&amp;CC=US&amp;NR=11481891B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Valikhani, Alireza</creatorcontrib><creatorcontrib>Mantawy, Islam Mohamed</creatorcontrib><creatorcontrib>Pouyanfar, Samira</creatorcontrib><creatorcontrib>Azizinamini, Atorod</creatorcontrib><creatorcontrib>Jahromi, Azadeh Jaberi</creatorcontrib><title>Systems and methods for quantifying concrete surface roughness</title><description>The degree of concrete surface roughness contributes to the bond strength between two concrete surfaces for either new construction or repair and retrofitting of concrete structures. Provided are novel systems and methods with industrial application to quantify concrete surface roughness from images which may be obtained from basic cameras or smartphones. A digital image processing system and method with a new index for concrete surface roughness based on the aggregate area-to-total surface area is provided. A machine learning method applying a combination of advanced techniques, including data augmentation and transfer learning, is utilized to categorize images based on the classification given during the learning process. Both methods compared favorably to a well-established method of 3D laser scanning.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALriwuSc0tVkjMS1HITS3JyE8pVkjLL1IoLE3MK8lMq8zMS1dIzs9LLkotSVUoLi1KS0xOVSjKL03PyEstLuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUDFeakl8aHBhoYmFoYWloZOhsbEqAEAp5IxaA</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Valikhani, Alireza</creator><creator>Mantawy, Islam Mohamed</creator><creator>Pouyanfar, Samira</creator><creator>Azizinamini, Atorod</creator><creator>Jahromi, Azadeh Jaberi</creator><scope>EVB</scope></search><sort><creationdate>20221025</creationdate><title>Systems and methods for quantifying concrete surface roughness</title><author>Valikhani, Alireza ; Mantawy, Islam Mohamed ; Pouyanfar, Samira ; Azizinamini, Atorod ; Jahromi, Azadeh Jaberi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11481891B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Valikhani, Alireza</creatorcontrib><creatorcontrib>Mantawy, Islam Mohamed</creatorcontrib><creatorcontrib>Pouyanfar, Samira</creatorcontrib><creatorcontrib>Azizinamini, Atorod</creatorcontrib><creatorcontrib>Jahromi, Azadeh Jaberi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valikhani, Alireza</au><au>Mantawy, Islam Mohamed</au><au>Pouyanfar, Samira</au><au>Azizinamini, Atorod</au><au>Jahromi, Azadeh Jaberi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for quantifying concrete surface roughness</title><date>2022-10-25</date><risdate>2022</risdate><abstract>The degree of concrete surface roughness contributes to the bond strength between two concrete surfaces for either new construction or repair and retrofitting of concrete structures. Provided are novel systems and methods with industrial application to quantify concrete surface roughness from images which may be obtained from basic cameras or smartphones. A digital image processing system and method with a new index for concrete surface roughness based on the aggregate area-to-total surface area is provided. A machine learning method applying a combination of advanced techniques, including data augmentation and transfer learning, is utilized to categorize images based on the classification given during the learning process. Both methods compared favorably to a well-established method of 3D laser scanning.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11481891B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Systems and methods for quantifying concrete surface roughness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Valikhani,%20Alireza&rft.date=2022-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11481891B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true