Subject line tester

Methods, systems, and devices supporting data processing are described. In some systems, a data processing platform may support communication message analysis using machine learning. For example, a system may receive a set of communication messages (e.g., social media messages) and perform a machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wilson, Daniel Keith, Brewer, James, Mallick, Shrestha Basu, Belkowitz, Jonathan Daniel Showers, Stadlinger, Peter, Cagrici, Gokhan, Gasperut, Daniel Louis, Black, Evan, Brewer, Michael Ronald, Lestina, Jason, Xie, Kexin, Zickgraf, Jeffery Allen, Lyman, Greg, Trepina, Matthew David, Schultz, Victoria, Rauschuber, Austin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wilson, Daniel Keith
Brewer, James
Mallick, Shrestha Basu
Belkowitz, Jonathan Daniel Showers
Stadlinger, Peter
Cagrici, Gokhan
Gasperut, Daniel Louis
Black, Evan
Brewer, Michael Ronald
Lestina, Jason
Xie, Kexin
Zickgraf, Jeffery Allen
Lyman, Greg
Trepina, Matthew David
Schultz, Victoria
Rauschuber, Austin
description Methods, systems, and devices supporting data processing are described. In some systems, a data processing platform may support communication message analysis using machine learning. For example, a system may receive a set of communication messages (e.g., social media messages) and perform a machine learning process on the message contents and message interaction data to train a machine learned model. The system may further receive a subject line for a communication message for analysis, input the subject line into the machine learned model, and receive, as an output of the machine learned model, an engagement score based on the subject line. The engagement score may indicate an estimated probability that a user receiving the communication message opens the communication message (e.g., based on the subject line). A user-or the system-may modify the subject line based on the analysis to improve the engagement score.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11475207B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11475207B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11475207B23</originalsourceid><addsrcrecordid>eNrjZBAOLk3KSk0uUcjJzEtVKEktLkkt4mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYm5qZGBuZORsbEqAEAH_Ygcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Subject line tester</title><source>esp@cenet</source><creator>Wilson, Daniel Keith ; Brewer, James ; Mallick, Shrestha Basu ; Belkowitz, Jonathan Daniel Showers ; Stadlinger, Peter ; Cagrici, Gokhan ; Gasperut, Daniel Louis ; Black, Evan ; Brewer, Michael Ronald ; Lestina, Jason ; Xie, Kexin ; Zickgraf, Jeffery Allen ; Lyman, Greg ; Trepina, Matthew David ; Schultz, Victoria ; Rauschuber, Austin</creator><creatorcontrib>Wilson, Daniel Keith ; Brewer, James ; Mallick, Shrestha Basu ; Belkowitz, Jonathan Daniel Showers ; Stadlinger, Peter ; Cagrici, Gokhan ; Gasperut, Daniel Louis ; Black, Evan ; Brewer, Michael Ronald ; Lestina, Jason ; Xie, Kexin ; Zickgraf, Jeffery Allen ; Lyman, Greg ; Trepina, Matthew David ; Schultz, Victoria ; Rauschuber, Austin</creatorcontrib><description>Methods, systems, and devices supporting data processing are described. In some systems, a data processing platform may support communication message analysis using machine learning. For example, a system may receive a set of communication messages (e.g., social media messages) and perform a machine learning process on the message contents and message interaction data to train a machine learned model. The system may further receive a subject line for a communication message for analysis, input the subject line into the machine learned model, and receive, as an output of the machine learned model, an engagement score based on the subject line. The engagement score may indicate an estimated probability that a user receiving the communication message opens the communication message (e.g., based on the subject line). A user-or the system-may modify the subject line based on the analysis to improve the engagement score.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=US&amp;NR=11475207B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=US&amp;NR=11475207B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wilson, Daniel Keith</creatorcontrib><creatorcontrib>Brewer, James</creatorcontrib><creatorcontrib>Mallick, Shrestha Basu</creatorcontrib><creatorcontrib>Belkowitz, Jonathan Daniel Showers</creatorcontrib><creatorcontrib>Stadlinger, Peter</creatorcontrib><creatorcontrib>Cagrici, Gokhan</creatorcontrib><creatorcontrib>Gasperut, Daniel Louis</creatorcontrib><creatorcontrib>Black, Evan</creatorcontrib><creatorcontrib>Brewer, Michael Ronald</creatorcontrib><creatorcontrib>Lestina, Jason</creatorcontrib><creatorcontrib>Xie, Kexin</creatorcontrib><creatorcontrib>Zickgraf, Jeffery Allen</creatorcontrib><creatorcontrib>Lyman, Greg</creatorcontrib><creatorcontrib>Trepina, Matthew David</creatorcontrib><creatorcontrib>Schultz, Victoria</creatorcontrib><creatorcontrib>Rauschuber, Austin</creatorcontrib><title>Subject line tester</title><description>Methods, systems, and devices supporting data processing are described. In some systems, a data processing platform may support communication message analysis using machine learning. For example, a system may receive a set of communication messages (e.g., social media messages) and perform a machine learning process on the message contents and message interaction data to train a machine learned model. The system may further receive a subject line for a communication message for analysis, input the subject line into the machine learned model, and receive, as an output of the machine learned model, an engagement score based on the subject line. The engagement score may indicate an estimated probability that a user receiving the communication message opens the communication message (e.g., based on the subject line). A user-or the system-may modify the subject line based on the analysis to improve the engagement score.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBAOLk3KSk0uUcjJzEtVKEktLkkt4mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYm5qZGBuZORsbEqAEAH_Ygcw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Wilson, Daniel Keith</creator><creator>Brewer, James</creator><creator>Mallick, Shrestha Basu</creator><creator>Belkowitz, Jonathan Daniel Showers</creator><creator>Stadlinger, Peter</creator><creator>Cagrici, Gokhan</creator><creator>Gasperut, Daniel Louis</creator><creator>Black, Evan</creator><creator>Brewer, Michael Ronald</creator><creator>Lestina, Jason</creator><creator>Xie, Kexin</creator><creator>Zickgraf, Jeffery Allen</creator><creator>Lyman, Greg</creator><creator>Trepina, Matthew David</creator><creator>Schultz, Victoria</creator><creator>Rauschuber, Austin</creator><scope>EVB</scope></search><sort><creationdate>20221018</creationdate><title>Subject line tester</title><author>Wilson, Daniel Keith ; Brewer, James ; Mallick, Shrestha Basu ; Belkowitz, Jonathan Daniel Showers ; Stadlinger, Peter ; Cagrici, Gokhan ; Gasperut, Daniel Louis ; Black, Evan ; Brewer, Michael Ronald ; Lestina, Jason ; Xie, Kexin ; Zickgraf, Jeffery Allen ; Lyman, Greg ; Trepina, Matthew David ; Schultz, Victoria ; Rauschuber, Austin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11475207B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Daniel Keith</creatorcontrib><creatorcontrib>Brewer, James</creatorcontrib><creatorcontrib>Mallick, Shrestha Basu</creatorcontrib><creatorcontrib>Belkowitz, Jonathan Daniel Showers</creatorcontrib><creatorcontrib>Stadlinger, Peter</creatorcontrib><creatorcontrib>Cagrici, Gokhan</creatorcontrib><creatorcontrib>Gasperut, Daniel Louis</creatorcontrib><creatorcontrib>Black, Evan</creatorcontrib><creatorcontrib>Brewer, Michael Ronald</creatorcontrib><creatorcontrib>Lestina, Jason</creatorcontrib><creatorcontrib>Xie, Kexin</creatorcontrib><creatorcontrib>Zickgraf, Jeffery Allen</creatorcontrib><creatorcontrib>Lyman, Greg</creatorcontrib><creatorcontrib>Trepina, Matthew David</creatorcontrib><creatorcontrib>Schultz, Victoria</creatorcontrib><creatorcontrib>Rauschuber, Austin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilson, Daniel Keith</au><au>Brewer, James</au><au>Mallick, Shrestha Basu</au><au>Belkowitz, Jonathan Daniel Showers</au><au>Stadlinger, Peter</au><au>Cagrici, Gokhan</au><au>Gasperut, Daniel Louis</au><au>Black, Evan</au><au>Brewer, Michael Ronald</au><au>Lestina, Jason</au><au>Xie, Kexin</au><au>Zickgraf, Jeffery Allen</au><au>Lyman, Greg</au><au>Trepina, Matthew David</au><au>Schultz, Victoria</au><au>Rauschuber, Austin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Subject line tester</title><date>2022-10-18</date><risdate>2022</risdate><abstract>Methods, systems, and devices supporting data processing are described. In some systems, a data processing platform may support communication message analysis using machine learning. For example, a system may receive a set of communication messages (e.g., social media messages) and perform a machine learning process on the message contents and message interaction data to train a machine learned model. The system may further receive a subject line for a communication message for analysis, input the subject line into the machine learned model, and receive, as an output of the machine learned model, an engagement score based on the subject line. The engagement score may indicate an estimated probability that a user receiving the communication message opens the communication message (e.g., based on the subject line). A user-or the system-may modify the subject line based on the analysis to improve the engagement score.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11475207B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Subject line tester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wilson,%20Daniel%20Keith&rft.date=2022-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11475207B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true