End-to-end memory networks for contextual language understanding
A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chen, Yun-Nung Deng, Li Gao, Jianfeng Hakkani-Tur, Dilek Z Tur, Gokhan |
description | A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11449744B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11449744B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11449744B23</originalsourceid><addsrcrecordid>eNrjZHBwzUvRLcnXTc1LUchNzc0vqlTISy0pzy_KLlZIyy9SSM7PK0mtKClNzFHIScxLL01MT1UozUtJLSouScxLycxL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQAPjQ4MNDU1MLM1NTJyMjIlRAwD_NzII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>End-to-end memory networks for contextual language understanding</title><source>esp@cenet</source><creator>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</creator><creatorcontrib>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</creatorcontrib><description>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220920&DB=EPODOC&CC=US&NR=11449744B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220920&DB=EPODOC&CC=US&NR=11449744B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Yun-Nung</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Gao, Jianfeng</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek Z</creatorcontrib><creatorcontrib>Tur, Gokhan</creatorcontrib><title>End-to-end memory networks for contextual language understanding</title><description>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwzUvRLcnXTc1LUchNzc0vqlTISy0pzy_KLlZIyy9SSM7PK0mtKClNzFHIScxLL01MT1UozUtJLSouScxLycxL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQAPjQ4MNDU1MLM1NTJyMjIlRAwD_NzII</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Chen, Yun-Nung</creator><creator>Deng, Li</creator><creator>Gao, Jianfeng</creator><creator>Hakkani-Tur, Dilek Z</creator><creator>Tur, Gokhan</creator><scope>EVB</scope></search><sort><creationdate>20220920</creationdate><title>End-to-end memory networks for contextual language understanding</title><author>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11449744B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun-Nung</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Gao, Jianfeng</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek Z</creatorcontrib><creatorcontrib>Tur, Gokhan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yun-Nung</au><au>Deng, Li</au><au>Gao, Jianfeng</au><au>Hakkani-Tur, Dilek Z</au><au>Tur, Gokhan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>End-to-end memory networks for contextual language understanding</title><date>2022-09-20</date><risdate>2022</risdate><abstract>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11449744B2 |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | End-to-end memory networks for contextual language understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Yun-Nung&rft.date=2022-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11449744B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |