End-to-end memory networks for contextual language understanding

A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Yun-Nung, Deng, Li, Gao, Jianfeng, Hakkani-Tur, Dilek Z, Tur, Gokhan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chen, Yun-Nung
Deng, Li
Gao, Jianfeng
Hakkani-Tur, Dilek Z
Tur, Gokhan
description A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11449744B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11449744B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11449744B23</originalsourceid><addsrcrecordid>eNrjZHBwzUvRLcnXTc1LUchNzc0vqlTISy0pzy_KLlZIyy9SSM7PK0mtKClNzFHIScxLL01MT1UozUtJLSouScxLycxL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQAPjQ4MNDU1MLM1NTJyMjIlRAwD_NzII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>End-to-end memory networks for contextual language understanding</title><source>esp@cenet</source><creator>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</creator><creatorcontrib>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</creatorcontrib><description>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220920&amp;DB=EPODOC&amp;CC=US&amp;NR=11449744B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220920&amp;DB=EPODOC&amp;CC=US&amp;NR=11449744B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Yun-Nung</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Gao, Jianfeng</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek Z</creatorcontrib><creatorcontrib>Tur, Gokhan</creatorcontrib><title>End-to-end memory networks for contextual language understanding</title><description>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwzUvRLcnXTc1LUchNzc0vqlTISy0pzy_KLlZIyy9SSM7PK0mtKClNzFHIScxLL01MT1UozUtJLSouScxLycxL52FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQAPjQ4MNDU1MLM1NTJyMjIlRAwD_NzII</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Chen, Yun-Nung</creator><creator>Deng, Li</creator><creator>Gao, Jianfeng</creator><creator>Hakkani-Tur, Dilek Z</creator><creator>Tur, Gokhan</creator><scope>EVB</scope></search><sort><creationdate>20220920</creationdate><title>End-to-end memory networks for contextual language understanding</title><author>Chen, Yun-Nung ; Deng, Li ; Gao, Jianfeng ; Hakkani-Tur, Dilek Z ; Tur, Gokhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11449744B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun-Nung</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Gao, Jianfeng</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek Z</creatorcontrib><creatorcontrib>Tur, Gokhan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yun-Nung</au><au>Deng, Li</au><au>Gao, Jianfeng</au><au>Hakkani-Tur, Dilek Z</au><au>Tur, Gokhan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>End-to-end memory networks for contextual language understanding</title><date>2022-09-20</date><risdate>2022</risdate><abstract>A processing unit can extract salient semantics to model knowledge carryover, from one turn to the next, in multi-turn conversations. Architecture described herein can use the end-to-end memory networks to encode inputs, e.g., utterances, with intents and slots, which can be stored as embeddings in memory, and in decoding the architecture can exploit latent contextual information from memory, e.g., demographic context, visual context, semantic context, etc. e.g., via an attention model, to leverage previously stored semantics for semantic parsing, e.g., for joint intent prediction and slot tagging. In examples, architecture is configured to build an end-to-end memory network model for contextual, e.g., multi-turn, language understanding, to apply the end-to-end memory network model to multiple turns of conversational input; and to fill slots for output of contextual, e.g., multi-turn, language understanding of the conversational input. The neural network can be learned using backpropagation from output to input using gradient descent optimization.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11449744B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title End-to-end memory networks for contextual language understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Yun-Nung&rft.date=2022-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11449744B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true