Systems and methods for utilizing machine learning to identify non-technical loss

Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Behzadi, Houman, Siebel, Thomas M, Kolter, Zico, Ohlsson, Henrik, Boustani, Avid, Krishnan, Nikhil, Chiu, Kuenley, Poirier, Louis, Abbo, Edward Y
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Behzadi, Houman
Siebel, Thomas M
Kolter, Zico
Ohlsson, Henrik
Boustani, Avid
Krishnan, Nikhil
Chiu, Kuenley
Poirier, Louis
Abbo, Edward Y
description Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11449315B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11449315B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11449315B23</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kAHWLr4KoorlKdS0gu5iC5lN451KcXwQdw-uHjX5pbP4tiEXAcoKCmGgRineCllOlN_ITifCJGyOgm_oJWoICsFGfgyo2iT0zeZchVZG0W0WXBza8rs72c76drg2MdUEbnkVGHR29t1x1auz_u2n-eDwoeODE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><source>esp@cenet</source><creator>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</creator><creatorcontrib>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</creatorcontrib><description>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TESTING ; TRANSMISSION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220920&amp;DB=EPODOC&amp;CC=US&amp;NR=11449315B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220920&amp;DB=EPODOC&amp;CC=US&amp;NR=11449315B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Behzadi, Houman</creatorcontrib><creatorcontrib>Siebel, Thomas M</creatorcontrib><creatorcontrib>Kolter, Zico</creatorcontrib><creatorcontrib>Ohlsson, Henrik</creatorcontrib><creatorcontrib>Boustani, Avid</creatorcontrib><creatorcontrib>Krishnan, Nikhil</creatorcontrib><creatorcontrib>Chiu, Kuenley</creatorcontrib><creatorcontrib>Poirier, Louis</creatorcontrib><creatorcontrib>Abbo, Edward Y</creatorcontrib><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><description>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TESTING</subject><subject>TRANSMISSION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kAHWLr4KoorlKdS0gu5iC5lN451KcXwQdw-uHjX5pbP4tiEXAcoKCmGgRineCllOlN_ITifCJGyOgm_oJWoICsFGfgyo2iT0zeZchVZG0W0WXBza8rs72c76drg2MdUEbnkVGHR29t1x1auz_u2n-eDwoeODE</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Behzadi, Houman</creator><creator>Siebel, Thomas M</creator><creator>Kolter, Zico</creator><creator>Ohlsson, Henrik</creator><creator>Boustani, Avid</creator><creator>Krishnan, Nikhil</creator><creator>Chiu, Kuenley</creator><creator>Poirier, Louis</creator><creator>Abbo, Edward Y</creator><scope>EVB</scope></search><sort><creationdate>20220920</creationdate><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><author>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11449315B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TESTING</topic><topic>TRANSMISSION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Behzadi, Houman</creatorcontrib><creatorcontrib>Siebel, Thomas M</creatorcontrib><creatorcontrib>Kolter, Zico</creatorcontrib><creatorcontrib>Ohlsson, Henrik</creatorcontrib><creatorcontrib>Boustani, Avid</creatorcontrib><creatorcontrib>Krishnan, Nikhil</creatorcontrib><creatorcontrib>Chiu, Kuenley</creatorcontrib><creatorcontrib>Poirier, Louis</creatorcontrib><creatorcontrib>Abbo, Edward Y</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Behzadi, Houman</au><au>Siebel, Thomas M</au><au>Kolter, Zico</au><au>Ohlsson, Henrik</au><au>Boustani, Avid</au><au>Krishnan, Nikhil</au><au>Chiu, Kuenley</au><au>Poirier, Louis</au><au>Abbo, Edward Y</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><date>2022-09-20</date><risdate>2022</risdate><abstract>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11449315B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TESTING
TRANSMISSION
WIRELESS COMMUNICATIONS NETWORKS
title Systems and methods for utilizing machine learning to identify non-technical loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Behzadi,%20Houman&rft.date=2022-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11449315B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true