Systems and methods for utilizing machine learning to identify non-technical loss
Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Behzadi, Houman Siebel, Thomas M Kolter, Zico Ohlsson, Henrik Boustani, Avid Krishnan, Nikhil Chiu, Kuenley Poirier, Louis Abbo, Edward Y |
description | Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11449315B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11449315B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11449315B23</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kAHWLr4KoorlKdS0gu5iC5lN451KcXwQdw-uHjX5pbP4tiEXAcoKCmGgRineCllOlN_ITifCJGyOgm_oJWoICsFGfgyo2iT0zeZchVZG0W0WXBza8rs72c76drg2MdUEbnkVGHR29t1x1auz_u2n-eDwoeODE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><source>esp@cenet</source><creator>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</creator><creatorcontrib>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</creatorcontrib><description>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TESTING ; TRANSMISSION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220920&DB=EPODOC&CC=US&NR=11449315B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220920&DB=EPODOC&CC=US&NR=11449315B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Behzadi, Houman</creatorcontrib><creatorcontrib>Siebel, Thomas M</creatorcontrib><creatorcontrib>Kolter, Zico</creatorcontrib><creatorcontrib>Ohlsson, Henrik</creatorcontrib><creatorcontrib>Boustani, Avid</creatorcontrib><creatorcontrib>Krishnan, Nikhil</creatorcontrib><creatorcontrib>Chiu, Kuenley</creatorcontrib><creatorcontrib>Poirier, Louis</creatorcontrib><creatorcontrib>Abbo, Edward Y</creatorcontrib><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><description>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TESTING</subject><subject>TRANSMISSION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kAHWLr4KoorlKdS0gu5iC5lN451KcXwQdw-uHjX5pbP4tiEXAcoKCmGgRineCllOlN_ITifCJGyOgm_oJWoICsFGfgyo2iT0zeZchVZG0W0WXBza8rs72c76drg2MdUEbnkVGHR29t1x1auz_u2n-eDwoeODE</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Behzadi, Houman</creator><creator>Siebel, Thomas M</creator><creator>Kolter, Zico</creator><creator>Ohlsson, Henrik</creator><creator>Boustani, Avid</creator><creator>Krishnan, Nikhil</creator><creator>Chiu, Kuenley</creator><creator>Poirier, Louis</creator><creator>Abbo, Edward Y</creator><scope>EVB</scope></search><sort><creationdate>20220920</creationdate><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><author>Behzadi, Houman ; Siebel, Thomas M ; Kolter, Zico ; Ohlsson, Henrik ; Boustani, Avid ; Krishnan, Nikhil ; Chiu, Kuenley ; Poirier, Louis ; Abbo, Edward Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11449315B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TESTING</topic><topic>TRANSMISSION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Behzadi, Houman</creatorcontrib><creatorcontrib>Siebel, Thomas M</creatorcontrib><creatorcontrib>Kolter, Zico</creatorcontrib><creatorcontrib>Ohlsson, Henrik</creatorcontrib><creatorcontrib>Boustani, Avid</creatorcontrib><creatorcontrib>Krishnan, Nikhil</creatorcontrib><creatorcontrib>Chiu, Kuenley</creatorcontrib><creatorcontrib>Poirier, Louis</creatorcontrib><creatorcontrib>Abbo, Edward Y</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Behzadi, Houman</au><au>Siebel, Thomas M</au><au>Kolter, Zico</au><au>Ohlsson, Henrik</au><au>Boustani, Avid</au><au>Krishnan, Nikhil</au><au>Chiu, Kuenley</au><au>Poirier, Louis</au><au>Abbo, Edward Y</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for utilizing machine learning to identify non-technical loss</title><date>2022-09-20</date><risdate>2022</risdate><abstract>Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11449315B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TESTING TRANSMISSION WIRELESS COMMUNICATIONS NETWORKS |
title | Systems and methods for utilizing machine learning to identify non-technical loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Behzadi,%20Houman&rft.date=2022-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11449315B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |