Job merging for machine and deep learning hyperparameter tuning
Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups cont...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Feng, Kuan Su, Zhichao Zhao, Yi Liu, Junfeng |
description | Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11443228B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11443228B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11443228B23</originalsourceid><addsrcrecordid>eNrjZLD3yk9SyE0tSs_MS1dIyy9SyE1MzsjMS1VIzEtRSElNLVDISU0sygPJZlQWpBYVJBYl5qaWpBYplJSCRHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhiYmxkZGFk5ExMWoAgPYxCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Job merging for machine and deep learning hyperparameter tuning</title><source>esp@cenet</source><creator>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</creator><creatorcontrib>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</creatorcontrib><description>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220913&DB=EPODOC&CC=US&NR=11443228B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220913&DB=EPODOC&CC=US&NR=11443228B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Feng, Kuan</creatorcontrib><creatorcontrib>Su, Zhichao</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><title>Job merging for machine and deep learning hyperparameter tuning</title><description>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD3yk9SyE0tSs_MS1dIyy9SyE1MzsjMS1VIzEtRSElNLVDISU0sygPJZlQWpBYVJBYl5qaWpBYplJSCRHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhiYmxkZGFk5ExMWoAgPYxCw</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Feng, Kuan</creator><creator>Su, Zhichao</creator><creator>Zhao, Yi</creator><creator>Liu, Junfeng</creator><scope>EVB</scope></search><sort><creationdate>20220913</creationdate><title>Job merging for machine and deep learning hyperparameter tuning</title><author>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11443228B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Kuan</creatorcontrib><creatorcontrib>Su, Zhichao</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Kuan</au><au>Su, Zhichao</au><au>Zhao, Yi</au><au>Liu, Junfeng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Job merging for machine and deep learning hyperparameter tuning</title><date>2022-09-13</date><risdate>2022</risdate><abstract>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11443228B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Job merging for machine and deep learning hyperparameter tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Feng,%20Kuan&rft.date=2022-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11443228B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |