Job merging for machine and deep learning hyperparameter tuning

Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feng, Kuan, Su, Zhichao, Zhao, Yi, Liu, Junfeng
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Feng, Kuan
Su, Zhichao
Zhao, Yi
Liu, Junfeng
description Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11443228B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11443228B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11443228B23</originalsourceid><addsrcrecordid>eNrjZLD3yk9SyE0tSs_MS1dIyy9SyE1MzsjMS1VIzEtRSElNLVDISU0sygPJZlQWpBYVJBYl5qaWpBYplJSCRHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhiYmxkZGFk5ExMWoAgPYxCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Job merging for machine and deep learning hyperparameter tuning</title><source>esp@cenet</source><creator>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</creator><creatorcontrib>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</creatorcontrib><description>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220913&amp;DB=EPODOC&amp;CC=US&amp;NR=11443228B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220913&amp;DB=EPODOC&amp;CC=US&amp;NR=11443228B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Feng, Kuan</creatorcontrib><creatorcontrib>Su, Zhichao</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><title>Job merging for machine and deep learning hyperparameter tuning</title><description>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD3yk9SyE0tSs_MS1dIyy9SyE1MzsjMS1VIzEtRSElNLVDISU0sygPJZlQWpBYVJBYl5qaWpBYplJSCRHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhiYmxkZGFk5ExMWoAgPYxCw</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Feng, Kuan</creator><creator>Su, Zhichao</creator><creator>Zhao, Yi</creator><creator>Liu, Junfeng</creator><scope>EVB</scope></search><sort><creationdate>20220913</creationdate><title>Job merging for machine and deep learning hyperparameter tuning</title><author>Feng, Kuan ; Su, Zhichao ; Zhao, Yi ; Liu, Junfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11443228B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Kuan</creatorcontrib><creatorcontrib>Su, Zhichao</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Kuan</au><au>Su, Zhichao</au><au>Zhao, Yi</au><au>Liu, Junfeng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Job merging for machine and deep learning hyperparameter tuning</title><date>2022-09-13</date><risdate>2022</risdate><abstract>Embodiments for efficient machine and deep learning hyperparameter tuning in a distributed computing system. Runtime metrics of each training iteration are collected to identify candidate jobs to merge during an execution phase. The candidate jobs are grouped into job groups, and the job groups containing the candidate jobs are merged together subsequent to each iteration boundary for execution during the execution phase.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11443228B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Job merging for machine and deep learning hyperparameter tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Feng,%20Kuan&rft.date=2022-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11443228B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true