Machine learning-powered resolution resource service for HCI systems
A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to det...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Limhengco, Jonathan Prince Wu, Zhengxun Li, Hui Rajan, Arun Duong, Luong Duy |
description | A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11436531B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11436531B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11436531B23</originalsourceid><addsrcrecordid>eNrjZHDxTUzOyMxLVchJTSzKy8xL1y3IL08tSk1RKEotzs8pLcnMzwMzS4uSUxWKU4vKMoF0Wn6Rgoezp0JxZXFJam4xDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2JDw02NDQxNjM1NnQyMiZGDQDkpDM3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-powered resolution resource service for HCI systems</title><source>esp@cenet</source><creator>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</creator><creatorcontrib>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</creatorcontrib><description>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220906&DB=EPODOC&CC=US&NR=11436531B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220906&DB=EPODOC&CC=US&NR=11436531B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Limhengco, Jonathan Prince</creatorcontrib><creatorcontrib>Wu, Zhengxun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Rajan, Arun</creatorcontrib><creatorcontrib>Duong, Luong Duy</creatorcontrib><title>Machine learning-powered resolution resource service for HCI systems</title><description>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxTUzOyMxLVchJTSzKy8xL1y3IL08tSk1RKEotzs8pLcnMzwMzS4uSUxWKU4vKMoF0Wn6Rgoezp0JxZXFJam4xDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2JDw02NDQxNjM1NnQyMiZGDQDkpDM3</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Limhengco, Jonathan Prince</creator><creator>Wu, Zhengxun</creator><creator>Li, Hui</creator><creator>Rajan, Arun</creator><creator>Duong, Luong Duy</creator><scope>EVB</scope></search><sort><creationdate>20220906</creationdate><title>Machine learning-powered resolution resource service for HCI systems</title><author>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11436531B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Limhengco, Jonathan Prince</creatorcontrib><creatorcontrib>Wu, Zhengxun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Rajan, Arun</creatorcontrib><creatorcontrib>Duong, Luong Duy</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Limhengco, Jonathan Prince</au><au>Wu, Zhengxun</au><au>Li, Hui</au><au>Rajan, Arun</au><au>Duong, Luong Duy</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-powered resolution resource service for HCI systems</title><date>2022-09-06</date><risdate>2022</risdate><abstract>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11436531B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Machine learning-powered resolution resource service for HCI systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Limhengco,%20Jonathan%20Prince&rft.date=2022-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11436531B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |