Machine learning-powered resolution resource service for HCI systems

A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Limhengco, Jonathan Prince, Wu, Zhengxun, Li, Hui, Rajan, Arun, Duong, Luong Duy
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Limhengco, Jonathan Prince
Wu, Zhengxun
Li, Hui
Rajan, Arun
Duong, Luong Duy
description A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11436531B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11436531B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11436531B23</originalsourceid><addsrcrecordid>eNrjZHDxTUzOyMxLVchJTSzKy8xL1y3IL08tSk1RKEotzs8pLcnMzwMzS4uSUxWKU4vKMoF0Wn6Rgoezp0JxZXFJam4xDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2JDw02NDQxNjM1NnQyMiZGDQDkpDM3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-powered resolution resource service for HCI systems</title><source>esp@cenet</source><creator>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</creator><creatorcontrib>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</creatorcontrib><description>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220906&amp;DB=EPODOC&amp;CC=US&amp;NR=11436531B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220906&amp;DB=EPODOC&amp;CC=US&amp;NR=11436531B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Limhengco, Jonathan Prince</creatorcontrib><creatorcontrib>Wu, Zhengxun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Rajan, Arun</creatorcontrib><creatorcontrib>Duong, Luong Duy</creatorcontrib><title>Machine learning-powered resolution resource service for HCI systems</title><description>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxTUzOyMxLVchJTSzKy8xL1y3IL08tSk1RKEotzs8pLcnMzwMzS4uSUxWKU4vKMoF0Wn6Rgoezp0JxZXFJam4xDwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE7NSy2JDw02NDQxNjM1NnQyMiZGDQDkpDM3</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Limhengco, Jonathan Prince</creator><creator>Wu, Zhengxun</creator><creator>Li, Hui</creator><creator>Rajan, Arun</creator><creator>Duong, Luong Duy</creator><scope>EVB</scope></search><sort><creationdate>20220906</creationdate><title>Machine learning-powered resolution resource service for HCI systems</title><author>Limhengco, Jonathan Prince ; Wu, Zhengxun ; Li, Hui ; Rajan, Arun ; Duong, Luong Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11436531B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Limhengco, Jonathan Prince</creatorcontrib><creatorcontrib>Wu, Zhengxun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Rajan, Arun</creatorcontrib><creatorcontrib>Duong, Luong Duy</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Limhengco, Jonathan Prince</au><au>Wu, Zhengxun</au><au>Li, Hui</au><au>Rajan, Arun</au><au>Duong, Luong Duy</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-powered resolution resource service for HCI systems</title><date>2022-09-06</date><risdate>2022</risdate><abstract>A method of processing requests from users of a computer system having software and hardware components, wherein each request includes a description of an software or hardware issue, includes: upon receiving a first request, performing content matching using a first instance of the data model to determine if the issue described in the first request has been previously encountered; executing a machine learning algorithm against a new data set to update a second instance of the data model; after the second instance of the data model has been updated, switching the data model used for performing content matching from the first to the second instance of the data model; and upon receiving a second request after the switch, performing content matching using the second instance of the data model to determine if the issue described in the second request has been previously encountered.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11436531B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Machine learning-powered resolution resource service for HCI systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Limhengco,%20Jonathan%20Prince&rft.date=2022-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11436531B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true