Joint embedding of corpus pairs for domain mapping

Techniques for outside-in mapping for corpus pairs are provided. In one example, a computer-implemented method comprises: inputting first keywords associated with a first domain corpus; extracting a first keyword of the first keywords; inputting second keywords associated with a second domain corpus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vaculin, Roman, Segal, Richard B, Jagmohan, Ashish, Khabiri, Elham
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vaculin, Roman
Segal, Richard B
Jagmohan, Ashish
Khabiri, Elham
description Techniques for outside-in mapping for corpus pairs are provided. In one example, a computer-implemented method comprises: inputting first keywords associated with a first domain corpus; extracting a first keyword of the first keywords; inputting second keywords associated with a second domain corpus; generating an embedded representation of the first keyword via a trained model and generating an embedded representation of the second keywords via the trained model; and scoring a joint embedding affinity associated with a joint embedding. The scoring the joint embedding affinity comprises: transforming the embedded representation of the first keyword and the embedded representation of the second keywords via the trained model; determining an affinity value based on comparing the first keyword to the second keywords; and based on the affinity value, aggregating the joint embedding of the embedded representation of the first keyword and the embedded representation of the second keywords within the second domain corpus.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11436487B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11436487B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11436487B23</originalsourceid><addsrcrecordid>eNrjZDDyys_MK1FIzU1KTUnJzEtXyE9TSM4vKigtVihIzCwqVkjLL1JIyc9NzMxTyE0sKAAq4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmxmYmFuZORsbEqAEAteIsDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Joint embedding of corpus pairs for domain mapping</title><source>esp@cenet</source><creator>Vaculin, Roman ; Segal, Richard B ; Jagmohan, Ashish ; Khabiri, Elham</creator><creatorcontrib>Vaculin, Roman ; Segal, Richard B ; Jagmohan, Ashish ; Khabiri, Elham</creatorcontrib><description>Techniques for outside-in mapping for corpus pairs are provided. In one example, a computer-implemented method comprises: inputting first keywords associated with a first domain corpus; extracting a first keyword of the first keywords; inputting second keywords associated with a second domain corpus; generating an embedded representation of the first keyword via a trained model and generating an embedded representation of the second keywords via the trained model; and scoring a joint embedding affinity associated with a joint embedding. The scoring the joint embedding affinity comprises: transforming the embedded representation of the first keyword and the embedded representation of the second keywords via the trained model; determining an affinity value based on comparing the first keyword to the second keywords; and based on the affinity value, aggregating the joint embedding of the embedded representation of the first keyword and the embedded representation of the second keywords within the second domain corpus.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220906&amp;DB=EPODOC&amp;CC=US&amp;NR=11436487B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220906&amp;DB=EPODOC&amp;CC=US&amp;NR=11436487B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vaculin, Roman</creatorcontrib><creatorcontrib>Segal, Richard B</creatorcontrib><creatorcontrib>Jagmohan, Ashish</creatorcontrib><creatorcontrib>Khabiri, Elham</creatorcontrib><title>Joint embedding of corpus pairs for domain mapping</title><description>Techniques for outside-in mapping for corpus pairs are provided. In one example, a computer-implemented method comprises: inputting first keywords associated with a first domain corpus; extracting a first keyword of the first keywords; inputting second keywords associated with a second domain corpus; generating an embedded representation of the first keyword via a trained model and generating an embedded representation of the second keywords via the trained model; and scoring a joint embedding affinity associated with a joint embedding. The scoring the joint embedding affinity comprises: transforming the embedded representation of the first keyword and the embedded representation of the second keywords via the trained model; determining an affinity value based on comparing the first keyword to the second keywords; and based on the affinity value, aggregating the joint embedding of the embedded representation of the first keyword and the embedded representation of the second keywords within the second domain corpus.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDyys_MK1FIzU1KTUnJzEtXyE9TSM4vKigtVihIzCwqVkjLL1JIyc9NzMxTyE0sKAAq4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYmxmYmFuZORsbEqAEAteIsDw</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Vaculin, Roman</creator><creator>Segal, Richard B</creator><creator>Jagmohan, Ashish</creator><creator>Khabiri, Elham</creator><scope>EVB</scope></search><sort><creationdate>20220906</creationdate><title>Joint embedding of corpus pairs for domain mapping</title><author>Vaculin, Roman ; Segal, Richard B ; Jagmohan, Ashish ; Khabiri, Elham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11436487B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Vaculin, Roman</creatorcontrib><creatorcontrib>Segal, Richard B</creatorcontrib><creatorcontrib>Jagmohan, Ashish</creatorcontrib><creatorcontrib>Khabiri, Elham</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vaculin, Roman</au><au>Segal, Richard B</au><au>Jagmohan, Ashish</au><au>Khabiri, Elham</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Joint embedding of corpus pairs for domain mapping</title><date>2022-09-06</date><risdate>2022</risdate><abstract>Techniques for outside-in mapping for corpus pairs are provided. In one example, a computer-implemented method comprises: inputting first keywords associated with a first domain corpus; extracting a first keyword of the first keywords; inputting second keywords associated with a second domain corpus; generating an embedded representation of the first keyword via a trained model and generating an embedded representation of the second keywords via the trained model; and scoring a joint embedding affinity associated with a joint embedding. The scoring the joint embedding affinity comprises: transforming the embedded representation of the first keyword and the embedded representation of the second keywords via the trained model; determining an affinity value based on comparing the first keyword to the second keywords; and based on the affinity value, aggregating the joint embedding of the embedded representation of the first keyword and the embedded representation of the second keywords within the second domain corpus.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11436487B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Joint embedding of corpus pairs for domain mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vaculin,%20Roman&rft.date=2022-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11436487B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true