Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets

The present disclosure describes a system, method, and computer program for detecting unmanaged and unauthorized assets on an IT network by identifying anomalously-named assets. A recurrent neural network (RNN) is trained to identify patterns in asset names in a network. The RNN learns the character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gil, Sylvain, Lin, Derek, Mihovilovic, Domingo, Steiman, Barry
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gil, Sylvain
Lin, Derek
Mihovilovic, Domingo
Steiman, Barry
description The present disclosure describes a system, method, and computer program for detecting unmanaged and unauthorized assets on an IT network by identifying anomalously-named assets. A recurrent neural network (RNN) is trained to identify patterns in asset names in a network. The RNN learns the character distribution patterns of the names of all observed assets in the training data, effectively capturing the hidden naming structures followed by a majority of assets on the network. The RNN is then used to identify assets with names that deviate from the hidden naming structures. Specifically, the RNN is used to measure the reconstruction errors of input asset name strings. Asset names with high reconstruction errors are anomalous since they cannot be explained by learned naming structures. After filtering for attributes or circumstances that mitigate risk, such assets are associated with a higher cybersecurity risk.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11431741B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11431741B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11431741B13</originalsourceid><addsrcrecordid>eNqNjT0OwjAMhbswIOAO5gAdoiKx8yd2YK6s1m0jUrtKHFXlJtyWIKHOLM_y--z3ltn7REqVWm4hco-MLdWAXKcNo3bi7etrhEAawHJCSRvxPaoVhvTbsThpJ2DSUfwTRqsdIHiqovfEmkD06GauHSrYOhHbWAopUXp0EoObcsZ-bltniwZdoM1vrrLt5Xw_XnMapKQwYEUpsnzcjNkVZr8zB1P8c_MBuHZUdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets</title><source>esp@cenet</source><creator>Gil, Sylvain ; Lin, Derek ; Mihovilovic, Domingo ; Steiman, Barry</creator><creatorcontrib>Gil, Sylvain ; Lin, Derek ; Mihovilovic, Domingo ; Steiman, Barry</creatorcontrib><description>The present disclosure describes a system, method, and computer program for detecting unmanaged and unauthorized assets on an IT network by identifying anomalously-named assets. A recurrent neural network (RNN) is trained to identify patterns in asset names in a network. The RNN learns the character distribution patterns of the names of all observed assets in the training data, effectively capturing the hidden naming structures followed by a majority of assets on the network. The RNN is then used to identify assets with names that deviate from the hidden naming structures. Specifically, the RNN is used to measure the reconstruction errors of input asset name strings. Asset names with high reconstruction errors are anomalous since they cannot be explained by learned naming structures. After filtering for attributes or circumstances that mitigate risk, such assets are associated with a higher cybersecurity risk.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=US&amp;NR=11431741B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=US&amp;NR=11431741B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gil, Sylvain</creatorcontrib><creatorcontrib>Lin, Derek</creatorcontrib><creatorcontrib>Mihovilovic, Domingo</creatorcontrib><creatorcontrib>Steiman, Barry</creatorcontrib><title>Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets</title><description>The present disclosure describes a system, method, and computer program for detecting unmanaged and unauthorized assets on an IT network by identifying anomalously-named assets. A recurrent neural network (RNN) is trained to identify patterns in asset names in a network. The RNN learns the character distribution patterns of the names of all observed assets in the training data, effectively capturing the hidden naming structures followed by a majority of assets on the network. The RNN is then used to identify assets with names that deviate from the hidden naming structures. Specifically, the RNN is used to measure the reconstruction errors of input asset name strings. Asset names with high reconstruction errors are anomalous since they cannot be explained by learned naming structures. After filtering for attributes or circumstances that mitigate risk, such assets are associated with a higher cybersecurity risk.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjT0OwjAMhbswIOAO5gAdoiKx8yd2YK6s1m0jUrtKHFXlJtyWIKHOLM_y--z3ltn7REqVWm4hco-MLdWAXKcNo3bi7etrhEAawHJCSRvxPaoVhvTbsThpJ2DSUfwTRqsdIHiqovfEmkD06GauHSrYOhHbWAopUXp0EoObcsZ-bltniwZdoM1vrrLt5Xw_XnMapKQwYEUpsnzcjNkVZr8zB1P8c_MBuHZUdQ</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Gil, Sylvain</creator><creator>Lin, Derek</creator><creator>Mihovilovic, Domingo</creator><creator>Steiman, Barry</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets</title><author>Gil, Sylvain ; Lin, Derek ; Mihovilovic, Domingo ; Steiman, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11431741B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Gil, Sylvain</creatorcontrib><creatorcontrib>Lin, Derek</creatorcontrib><creatorcontrib>Mihovilovic, Domingo</creatorcontrib><creatorcontrib>Steiman, Barry</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gil, Sylvain</au><au>Lin, Derek</au><au>Mihovilovic, Domingo</au><au>Steiman, Barry</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The present disclosure describes a system, method, and computer program for detecting unmanaged and unauthorized assets on an IT network by identifying anomalously-named assets. A recurrent neural network (RNN) is trained to identify patterns in asset names in a network. The RNN learns the character distribution patterns of the names of all observed assets in the training data, effectively capturing the hidden naming structures followed by a majority of assets on the network. The RNN is then used to identify assets with names that deviate from the hidden naming structures. Specifically, the RNN is used to measure the reconstruction errors of input asset name strings. Asset names with high reconstruction errors are anomalous since they cannot be explained by learned naming structures. After filtering for attributes or circumstances that mitigate risk, such assets are associated with a higher cybersecurity risk.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11431741B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Detecting unmanaged and unauthorized assets in an information technology network with a recurrent neural network that identifies anomalously-named assets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gil,%20Sylvain&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11431741B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true