Evaluating unsupervised learning models

Techniques described herein include systems and methods for evaluating an unsupervised machine learning model. In some embodiments, the system identifies item-to-item similarity values based on historical transaction data. The system may also generate collection data for a number of users based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dorner, Charles Shearer, Haitani, Robert Yuji, Daehne, Sven
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dorner, Charles Shearer
Haitani, Robert Yuji
Daehne, Sven
description Techniques described herein include systems and methods for evaluating an unsupervised machine learning model. In some embodiments, the system identifies item-to-item similarity values based on historical transaction data. The system may also generate collection data for a number of users based on the historical transaction data. Similarity matrices may be created for each pair of users that include rows associated with a first collection and columns associated with a second collection. Each data field in the similarity matrix may indicate an item-to-item similarity value as identified by the system. In some embodiments, a similarity score may be calculated for the user pair based on the item-to-item similarity values included in the similarity matrix. In some embodiments, the system may generate a graphical summary representation of the similarity matrix.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11429889B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11429889B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11429889B23</originalsourceid><addsrcrecordid>eNrjZFB3LUvMKU0sycxLVyjNKy4tSC0qyyxOTVHISU0sygOJ5uanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MTI0sLC0snI2Ni1AAA6LYoxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Evaluating unsupervised learning models</title><source>esp@cenet</source><creator>Dorner, Charles Shearer ; Haitani, Robert Yuji ; Daehne, Sven</creator><creatorcontrib>Dorner, Charles Shearer ; Haitani, Robert Yuji ; Daehne, Sven</creatorcontrib><description>Techniques described herein include systems and methods for evaluating an unsupervised machine learning model. In some embodiments, the system identifies item-to-item similarity values based on historical transaction data. The system may also generate collection data for a number of users based on the historical transaction data. Similarity matrices may be created for each pair of users that include rows associated with a first collection and columns associated with a second collection. Each data field in the similarity matrix may indicate an item-to-item similarity value as identified by the system. In some embodiments, a similarity score may be calculated for the user pair based on the item-to-item similarity values included in the similarity matrix. In some embodiments, the system may generate a graphical summary representation of the similarity matrix.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=US&amp;NR=11429889B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=US&amp;NR=11429889B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dorner, Charles Shearer</creatorcontrib><creatorcontrib>Haitani, Robert Yuji</creatorcontrib><creatorcontrib>Daehne, Sven</creatorcontrib><title>Evaluating unsupervised learning models</title><description>Techniques described herein include systems and methods for evaluating an unsupervised machine learning model. In some embodiments, the system identifies item-to-item similarity values based on historical transaction data. The system may also generate collection data for a number of users based on the historical transaction data. Similarity matrices may be created for each pair of users that include rows associated with a first collection and columns associated with a second collection. Each data field in the similarity matrix may indicate an item-to-item similarity value as identified by the system. In some embodiments, a similarity score may be calculated for the user pair based on the item-to-item similarity values included in the similarity matrix. In some embodiments, the system may generate a graphical summary representation of the similarity matrix.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3LUvMKU0sycxLVyjNKy4tSC0qyyxOTVHISU0sygOJ5uanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MTI0sLC0snI2Ni1AAA6LYoxw</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Dorner, Charles Shearer</creator><creator>Haitani, Robert Yuji</creator><creator>Daehne, Sven</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Evaluating unsupervised learning models</title><author>Dorner, Charles Shearer ; Haitani, Robert Yuji ; Daehne, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11429889B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Dorner, Charles Shearer</creatorcontrib><creatorcontrib>Haitani, Robert Yuji</creatorcontrib><creatorcontrib>Daehne, Sven</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorner, Charles Shearer</au><au>Haitani, Robert Yuji</au><au>Daehne, Sven</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Evaluating unsupervised learning models</title><date>2022-08-30</date><risdate>2022</risdate><abstract>Techniques described herein include systems and methods for evaluating an unsupervised machine learning model. In some embodiments, the system identifies item-to-item similarity values based on historical transaction data. The system may also generate collection data for a number of users based on the historical transaction data. Similarity matrices may be created for each pair of users that include rows associated with a first collection and columns associated with a second collection. Each data field in the similarity matrix may indicate an item-to-item similarity value as identified by the system. In some embodiments, a similarity score may be calculated for the user pair based on the item-to-item similarity values included in the similarity matrix. In some embodiments, the system may generate a graphical summary representation of the similarity matrix.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11429889B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Evaluating unsupervised learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dorner,%20Charles%20Shearer&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11429889B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true